| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 3 | 1 2 | ablcom | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑦  ∈  ( Base ‘ 𝐺 )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  =  ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 4 | 3 | 3expb | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑦  ∈  ( Base ‘ 𝐺 )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) ) )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  =  ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑦  ∈  ( Base ‘ 𝐺 )  ∧  𝑧  ∈  ( Base ‘ 𝐺 ) ) )  →  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑥  ↔  ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑥 ) ) | 
						
							| 6 | 5 | ralrimivva | ⊢ ( 𝐺  ∈  Abel  →  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∀ 𝑧  ∈  ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑥  ↔  ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑥 ) ) | 
						
							| 7 | 1 2 | isnsg | ⊢ ( 𝑥  ∈  ( NrmSGrp ‘ 𝐺 )  ↔  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∀ 𝑧  ∈  ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑥  ↔  ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑥 ) ) ) | 
						
							| 8 | 7 | rbaib | ⊢ ( ∀ 𝑦  ∈  ( Base ‘ 𝐺 ) ∀ 𝑧  ∈  ( Base ‘ 𝐺 ) ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 )  ∈  𝑥  ↔  ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝑥 )  →  ( 𝑥  ∈  ( NrmSGrp ‘ 𝐺 )  ↔  𝑥  ∈  ( SubGrp ‘ 𝐺 ) ) ) | 
						
							| 9 | 6 8 | syl | ⊢ ( 𝐺  ∈  Abel  →  ( 𝑥  ∈  ( NrmSGrp ‘ 𝐺 )  ↔  𝑥  ∈  ( SubGrp ‘ 𝐺 ) ) ) | 
						
							| 10 | 9 | eqrdv | ⊢ ( 𝐺  ∈  Abel  →  ( NrmSGrp ‘ 𝐺 )  =  ( SubGrp ‘ 𝐺 ) ) |