Metamath Proof Explorer


Theorem ablo32

Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis ablcom.1 𝑋 = ran 𝐺
Assertion ablo32 ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ablcom.1 𝑋 = ran 𝐺
2 1 ablocom ( ( 𝐺 ∈ AbelOp ∧ 𝐵𝑋𝐶𝑋 ) → ( 𝐵 𝐺 𝐶 ) = ( 𝐶 𝐺 𝐵 ) )
3 2 3adant3r1 ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( 𝐵 𝐺 𝐶 ) = ( 𝐶 𝐺 𝐵 ) )
4 3 oveq2d ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝐵 ) ) )
5 ablogrpo ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp )
6 1 grpoass ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) )
7 5 6 sylan ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( 𝐴 𝐺 ( 𝐵 𝐺 𝐶 ) ) )
8 3ancomb ( ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ↔ ( 𝐴𝑋𝐶𝑋𝐵𝑋 ) )
9 1 grpoass ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴𝑋𝐶𝑋𝐵𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝐵 ) ) )
10 8 9 sylan2b ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝐵 ) ) )
11 5 10 sylan ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝐵 ) ) )
12 4 7 11 3eqtr4d ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴𝑋𝐵𝑋𝐶𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐵 ) )