| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abl4pnp.1 |
⊢ 𝑋 = ran 𝐺 |
| 2 |
|
abl4pnp.2 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
| 3 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) ) |
| 4 |
1 2
|
ablomuldiv |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
| 5 |
3 4
|
sylan2br |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
| 6 |
5
|
adantrrr |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
| 7 |
6
|
oveq1d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) 𝐷 𝐹 ) = ( ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) 𝐷 𝐹 ) ) |
| 8 |
|
ablogrpo |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) |
| 9 |
1
|
grpocl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 10 |
9
|
3expib |
⊢ ( 𝐺 ∈ GrpOp → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) ) |
| 11 |
8 10
|
syl |
⊢ ( 𝐺 ∈ AbelOp → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) ) |
| 12 |
11
|
anim1d |
⊢ ( 𝐺 ∈ AbelOp → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) ) |
| 13 |
|
3anass |
⊢ ( ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ↔ ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) |
| 14 |
12 13
|
imbitrrdi |
⊢ ( 𝐺 ∈ AbelOp → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) |
| 15 |
14
|
imp |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) |
| 16 |
1 2
|
ablodivdiv4 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐷 ( 𝐶 𝐺 𝐹 ) ) ) |
| 17 |
15 16
|
syldan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐷 ( 𝐶 𝐺 𝐹 ) ) ) |
| 18 |
1 2
|
grpodivcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) |
| 19 |
18
|
3expib |
⊢ ( 𝐺 ∈ GrpOp → ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) ) |
| 20 |
19
|
anim1d |
⊢ ( 𝐺 ∈ GrpOp → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) ) |
| 21 |
|
an4 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) |
| 22 |
|
3anass |
⊢ ( ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ↔ ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) |
| 23 |
20 21 22
|
3imtr4g |
⊢ ( 𝐺 ∈ GrpOp → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) |
| 24 |
23
|
imp |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) |
| 25 |
1 2
|
grpomuldivass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 ( 𝐵 𝐷 𝐹 ) ) ) |
| 26 |
24 25
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 ( 𝐵 𝐷 𝐹 ) ) ) |
| 27 |
8 26
|
sylan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 ( 𝐵 𝐷 𝐹 ) ) ) |
| 28 |
7 17 27
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 ( 𝐶 𝐺 𝐹 ) ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 ( 𝐵 𝐷 𝐹 ) ) ) |