Step |
Hyp |
Ref |
Expression |
1 |
|
abl4pnp.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
abl4pnp.2 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
3 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) ) |
4 |
1 2
|
ablomuldiv |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
5 |
3 4
|
sylan2br |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
6 |
5
|
adantrrr |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
7 |
6
|
oveq1d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) 𝐷 𝐹 ) = ( ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) 𝐷 𝐹 ) ) |
8 |
|
ablogrpo |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) |
9 |
1
|
grpocl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
10 |
9
|
3expib |
⊢ ( 𝐺 ∈ GrpOp → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) ) |
11 |
8 10
|
syl |
⊢ ( 𝐺 ∈ AbelOp → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) ) |
12 |
11
|
anim1d |
⊢ ( 𝐺 ∈ AbelOp → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) ) |
13 |
|
3anass |
⊢ ( ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ↔ ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) |
14 |
12 13
|
syl6ibr |
⊢ ( 𝐺 ∈ AbelOp → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) |
15 |
14
|
imp |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) |
16 |
1 2
|
ablodivdiv4 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐷 ( 𝐶 𝐺 𝐹 ) ) ) |
17 |
15 16
|
syldan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐺 𝐵 ) 𝐷 ( 𝐶 𝐺 𝐹 ) ) ) |
18 |
1 2
|
grpodivcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) |
19 |
18
|
3expib |
⊢ ( 𝐺 ∈ GrpOp → ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) ) |
20 |
19
|
anim1d |
⊢ ( 𝐺 ∈ GrpOp → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) ) |
21 |
|
an4 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) |
22 |
|
3anass |
⊢ ( ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ↔ ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) |
23 |
20 21 22
|
3imtr4g |
⊢ ( 𝐺 ∈ GrpOp → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) |
24 |
23
|
imp |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) |
25 |
1 2
|
grpomuldivass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 ( 𝐵 𝐷 𝐹 ) ) ) |
26 |
24 25
|
syldan |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 ( 𝐵 𝐷 𝐹 ) ) ) |
27 |
8 26
|
sylan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) 𝐷 𝐹 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 ( 𝐵 𝐷 𝐹 ) ) ) |
28 |
7 17 27
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋 ) ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 ( 𝐶 𝐺 𝐹 ) ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 ( 𝐵 𝐷 𝐹 ) ) ) |