Step |
Hyp |
Ref |
Expression |
1 |
|
ablcom.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
1
|
isablo |
⊢ ( 𝐺 ∈ AbelOp ↔ ( 𝐺 ∈ GrpOp ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) ) |
3 |
2
|
simprbi |
⊢ ( 𝐺 ∈ AbelOp → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ) |
4 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐺 𝑦 ) = ( 𝐴 𝐺 𝑦 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 𝐺 𝑥 ) = ( 𝑦 𝐺 𝐴 ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) ↔ ( 𝐴 𝐺 𝑦 ) = ( 𝑦 𝐺 𝐴 ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 𝑦 ) = ( 𝐴 𝐺 𝐵 ) ) |
8 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 𝐺 𝐴 ) = ( 𝐵 𝐺 𝐴 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐺 𝑦 ) = ( 𝑦 𝐺 𝐴 ) ↔ ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) ) |
10 |
6 9
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) ) |
11 |
3 10
|
syl5com |
⊢ ( 𝐺 ∈ AbelOp → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) ) |
12 |
11
|
3impib |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) |