| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablcom.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 | 1 | isablo | ⊢ ( 𝐺  ∈  AbelOp  ↔  ( 𝐺  ∈  GrpOp  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐺 𝑦 )  =  ( 𝑦 𝐺 𝑥 ) ) ) | 
						
							| 3 | 2 | simprbi | ⊢ ( 𝐺  ∈  AbelOp  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐺 𝑦 )  =  ( 𝑦 𝐺 𝑥 ) ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐺 𝑦 )  =  ( 𝐴 𝐺 𝑦 ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑦 𝐺 𝑥 )  =  ( 𝑦 𝐺 𝐴 ) ) | 
						
							| 6 | 4 5 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥 𝐺 𝑦 )  =  ( 𝑦 𝐺 𝑥 )  ↔  ( 𝐴 𝐺 𝑦 )  =  ( 𝑦 𝐺 𝐴 ) ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴 𝐺 𝑦 )  =  ( 𝐴 𝐺 𝐵 ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦 𝐺 𝐴 )  =  ( 𝐵 𝐺 𝐴 ) ) | 
						
							| 9 | 7 8 | eqeq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴 𝐺 𝑦 )  =  ( 𝑦 𝐺 𝐴 )  ↔  ( 𝐴 𝐺 𝐵 )  =  ( 𝐵 𝐺 𝐴 ) ) ) | 
						
							| 10 | 6 9 | rspc2v | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐺 𝑦 )  =  ( 𝑦 𝐺 𝑥 )  →  ( 𝐴 𝐺 𝐵 )  =  ( 𝐵 𝐺 𝐴 ) ) ) | 
						
							| 11 | 3 10 | syl5com | ⊢ ( 𝐺  ∈  AbelOp  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐺 𝐵 )  =  ( 𝐵 𝐺 𝐴 ) ) ) | 
						
							| 12 | 11 | 3impib | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐺 𝐵 )  =  ( 𝐵 𝐺 𝐴 ) ) |