Step |
Hyp |
Ref |
Expression |
1 |
|
abldiv.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
abldiv.3 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
3 |
1
|
ablocom |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐺 𝐶 ) = ( 𝐶 𝐺 𝐵 ) ) |
4 |
3
|
3adant3r1 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐺 𝐶 ) = ( 𝐶 𝐺 𝐵 ) ) |
5 |
4
|
oveq2d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐺 𝐶 ) ) = ( 𝐴 𝐷 ( 𝐶 𝐺 𝐵 ) ) ) |
6 |
1 2
|
ablodivdiv4 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 ) = ( 𝐴 𝐷 ( 𝐵 𝐺 𝐶 ) ) ) |
7 |
|
3ancomb |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
8 |
1 2
|
ablodivdiv4 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) 𝐷 𝐵 ) = ( 𝐴 𝐷 ( 𝐶 𝐺 𝐵 ) ) ) |
9 |
7 8
|
sylan2b |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) 𝐷 𝐵 ) = ( 𝐴 𝐷 ( 𝐶 𝐺 𝐵 ) ) ) |
10 |
5 6 9
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐷 𝐵 ) ) |