| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abldiv.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | abldiv.3 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 3 | 1 | ablocom | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵 𝐺 𝐶 )  =  ( 𝐶 𝐺 𝐵 ) ) | 
						
							| 4 | 3 | 3adant3r1 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐵 𝐺 𝐶 )  =  ( 𝐶 𝐺 𝐵 ) ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 ( 𝐵 𝐺 𝐶 ) )  =  ( 𝐴 𝐷 ( 𝐶 𝐺 𝐵 ) ) ) | 
						
							| 6 | 1 2 | ablodivdiv4 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 )  =  ( 𝐴 𝐷 ( 𝐵 𝐺 𝐶 ) ) ) | 
						
							| 7 |  | 3ancomb | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  ↔  ( 𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) ) | 
						
							| 8 | 1 2 | ablodivdiv4 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐶 ) 𝐷 𝐵 )  =  ( 𝐴 𝐷 ( 𝐶 𝐺 𝐵 ) ) ) | 
						
							| 9 | 7 8 | sylan2b | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐶 ) 𝐷 𝐵 )  =  ( 𝐴 𝐷 ( 𝐶 𝐺 𝐵 ) ) ) | 
						
							| 10 | 5 6 9 | 3eqtr4d | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 )  =  ( ( 𝐴 𝐷 𝐶 ) 𝐷 𝐵 ) ) |