| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abldiv.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | abldiv.3 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 3 |  | ablogrpo | ⊢ ( 𝐺  ∈  AbelOp  →  𝐺  ∈  GrpOp ) | 
						
							| 4 | 1 2 | grpodivdiv | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) )  =  ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) | 
						
							| 5 | 3 4 | sylan | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) )  =  ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) | 
						
							| 6 |  | 3ancomb | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  ↔  ( 𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) ) | 
						
							| 7 | 1 2 | grpomuldivass | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐶 ) 𝐷 𝐵 )  =  ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) | 
						
							| 8 | 3 7 | sylan | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐶 ) 𝐷 𝐵 )  =  ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) | 
						
							| 9 | 1 2 | ablomuldiv | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐶 ) 𝐷 𝐵 )  =  ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐶 ) ) | 
						
							| 10 | 8 9 | eqtr3d | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) )  =  ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐶 ) ) | 
						
							| 11 | 6 10 | sylan2b | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) )  =  ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐶 ) ) | 
						
							| 12 | 5 11 | eqtrd | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) )  =  ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐶 ) ) |