Step |
Hyp |
Ref |
Expression |
1 |
|
abldiv.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
abldiv.3 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
3 |
|
ablogrpo |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) |
4 |
1 2
|
grpodivdiv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |
6 |
|
3ancomb |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
7 |
1 2
|
grpomuldivass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |
8 |
3 7
|
sylan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐷 𝐵 ) = ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) ) |
9 |
1 2
|
ablomuldiv |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐶 ) 𝐷 𝐵 ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐶 ) ) |
10 |
8 9
|
eqtr3d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐶 ) ) |
11 |
6 10
|
sylan2b |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐺 ( 𝐶 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐶 ) ) |
12 |
5 11
|
eqtrd |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 𝐶 ) ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 𝐶 ) ) |