| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abldiv.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | abldiv.3 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 3 |  | ablogrpo | ⊢ ( 𝐺  ∈  AbelOp  →  𝐺  ∈  GrpOp ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  𝐺  ∈  GrpOp ) | 
						
							| 5 | 1 2 | grpodivcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  ∈  𝑋 ) | 
						
							| 6 | 5 | 3adant3r3 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 𝐵 )  ∈  𝑋 ) | 
						
							| 7 |  | simpr3 | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  𝐶  ∈  𝑋 ) | 
						
							| 8 |  | eqid | ⊢ ( inv ‘ 𝐺 )  =  ( inv ‘ 𝐺 ) | 
						
							| 9 | 1 8 2 | grpodivval | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴 𝐷 𝐵 )  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 )  =  ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) | 
						
							| 10 | 4 6 7 9 | syl3anc | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 )  =  ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) | 
						
							| 11 | 3 10 | sylan | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 )  =  ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) | 
						
							| 12 |  | simpr1 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 13 |  | simpr2 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  𝐵  ∈  𝑋 ) | 
						
							| 14 |  | simp3 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  𝐶  ∈  𝑋 ) | 
						
							| 15 | 1 8 | grpoinvcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐶  ∈  𝑋 )  →  ( ( inv ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋 ) | 
						
							| 16 | 3 14 15 | syl2an | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( inv ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋 ) | 
						
							| 17 | 12 13 16 | 3jca | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( ( inv ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋 ) ) | 
						
							| 18 | 1 2 | ablodivdiv | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( ( inv ‘ 𝐺 ) ‘ 𝐶 )  ∈  𝑋 ) )  →  ( 𝐴 𝐷 ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) )  =  ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) | 
						
							| 19 | 17 18 | syldan | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) )  =  ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) | 
						
							| 20 | 1 8 2 | grpodivinv | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) )  =  ( 𝐵 𝐺 𝐶 ) ) | 
						
							| 21 | 3 20 | syl3an1 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) )  =  ( 𝐵 𝐺 𝐶 ) ) | 
						
							| 22 | 21 | 3adant3r1 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) )  =  ( 𝐵 𝐺 𝐶 ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) )  =  ( 𝐴 𝐷 ( 𝐵 𝐺 𝐶 ) ) ) | 
						
							| 24 | 11 19 23 | 3eqtr2d | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 )  =  ( 𝐴 𝐷 ( 𝐵 𝐺 𝐶 ) ) ) |