Step |
Hyp |
Ref |
Expression |
1 |
|
abldiv.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
abldiv.3 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
3 |
|
ablogrpo |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) |
4 |
|
simpl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ GrpOp ) |
5 |
1 2
|
grpodivcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ) |
6 |
5
|
3adant3r3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ) |
7 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) |
8 |
|
eqid |
⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) |
9 |
1 8 2
|
grpodivval |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 𝐷 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
10 |
4 6 7 9
|
syl3anc |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
11 |
3 10
|
sylan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
12 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
13 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) |
14 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ∈ 𝑋 ) |
15 |
1 8
|
grpoinvcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐶 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
16 |
3 14 15
|
syl2an |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
17 |
12 13 16
|
3jca |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) |
18 |
1 2
|
ablodivdiv |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
19 |
17 18
|
syldan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( ( 𝐴 𝐷 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
20 |
1 8 2
|
grpodivinv |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) = ( 𝐵 𝐺 𝐶 ) ) |
21 |
3 20
|
syl3an1 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) = ( 𝐵 𝐺 𝐶 ) ) |
22 |
21
|
3adant3r1 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) = ( 𝐵 𝐺 𝐶 ) ) |
23 |
22
|
oveq2d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐵 𝐷 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( 𝐴 𝐷 ( 𝐵 𝐺 𝐶 ) ) ) |
24 |
11 19 23
|
3eqtr2d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 𝐶 ) = ( 𝐴 𝐷 ( 𝐵 𝐺 𝐶 ) ) ) |