Step |
Hyp |
Ref |
Expression |
1 |
|
abldiv.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
abldiv.3 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
3 |
1
|
ablocom |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) |
4 |
3
|
3adant3r3 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝐵 ) = ( 𝐵 𝐺 𝐴 ) ) |
5 |
4
|
oveq1d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐵 𝐺 𝐴 ) 𝐷 𝐶 ) ) |
6 |
|
3ancoma |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) |
7 |
|
ablogrpo |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) |
8 |
1 2
|
grpomuldivass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 𝐴 ) 𝐷 𝐶 ) = ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) ) |
9 |
7 8
|
sylan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 𝐴 ) 𝐷 𝐶 ) = ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) ) |
10 |
6 9
|
sylan2b |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐵 𝐺 𝐴 ) 𝐷 𝐶 ) = ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) ) |
11 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) |
12 |
1 2
|
grpodivcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) |
13 |
7 12
|
syl3an1 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) |
14 |
13
|
3adant3r2 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) |
15 |
11 14
|
jca |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) ) |
16 |
1
|
ablocom |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) → ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
17 |
16
|
3expb |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) ) → ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
18 |
15 17
|
syldan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |
19 |
5 10 18
|
3eqtrd |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 ) = ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |