| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abldiv.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | abldiv.3 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 3 | 1 | ablocom | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐺 𝐵 )  =  ( 𝐵 𝐺 𝐴 ) ) | 
						
							| 4 | 3 | 3adant3r3 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐺 𝐵 )  =  ( 𝐵 𝐺 𝐴 ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 )  =  ( ( 𝐵 𝐺 𝐴 ) 𝐷 𝐶 ) ) | 
						
							| 6 |  | 3ancoma | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  ↔  ( 𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) ) | 
						
							| 7 |  | ablogrpo | ⊢ ( 𝐺  ∈  AbelOp  →  𝐺  ∈  GrpOp ) | 
						
							| 8 | 1 2 | grpomuldivass | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  ( 𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐵 𝐺 𝐴 ) 𝐷 𝐶 )  =  ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) ) | 
						
							| 9 | 7 8 | sylan | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐵  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐵 𝐺 𝐴 ) 𝐷 𝐶 )  =  ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) ) | 
						
							| 10 | 6 9 | sylan2b | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐵 𝐺 𝐴 ) 𝐷 𝐶 )  =  ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) ) ) | 
						
							| 11 |  | simpr2 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  𝐵  ∈  𝑋 ) | 
						
							| 12 | 1 2 | grpodivcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐶 )  ∈  𝑋 ) | 
						
							| 13 | 7 12 | syl3an1 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐶 )  ∈  𝑋 ) | 
						
							| 14 | 13 | 3adant3r2 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 𝐶 )  ∈  𝑋 ) | 
						
							| 15 | 11 14 | jca | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐵  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐶 )  ∈  𝑋 ) ) | 
						
							| 16 | 1 | ablocom | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐵  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐶 )  ∈  𝑋 )  →  ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) )  =  ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) | 
						
							| 17 | 16 | 3expb | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐵  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐶 )  ∈  𝑋 ) )  →  ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) )  =  ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) | 
						
							| 18 | 15 17 | syldan | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐵 𝐺 ( 𝐴 𝐷 𝐶 ) )  =  ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) | 
						
							| 19 | 5 10 18 | 3eqtrd | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 𝐵 ) 𝐷 𝐶 )  =  ( ( 𝐴 𝐷 𝐶 ) 𝐺 𝐵 ) ) |