| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abldiv.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | abldiv.3 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 3 |  | id | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) ) | 
						
							| 4 | 3 | 3anidm12 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) ) | 
						
							| 5 | 1 2 | ablodivdiv | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) )  =  ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) ) | 
						
							| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) )  =  ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) ) | 
						
							| 7 | 6 | 3impb | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) )  =  ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) ) | 
						
							| 8 |  | ablogrpo | ⊢ ( 𝐺  ∈  AbelOp  →  𝐺  ∈  GrpOp ) | 
						
							| 9 |  | eqid | ⊢ ( GId ‘ 𝐺 )  =  ( GId ‘ 𝐺 ) | 
						
							| 10 | 1 2 9 | grpodivid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐴 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 11 | 8 10 | sylan | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐴 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 12 | 11 | 3adant3 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐴 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 )  =  ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) ) | 
						
							| 14 | 1 9 | grpolid | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐵  ∈  𝑋 )  →  ( ( GId ‘ 𝐺 ) 𝐺 𝐵 )  =  𝐵 ) | 
						
							| 15 | 8 14 | sylan | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐵  ∈  𝑋 )  →  ( ( GId ‘ 𝐺 ) 𝐺 𝐵 )  =  𝐵 ) | 
						
							| 16 | 15 | 3adant2 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( GId ‘ 𝐺 ) 𝐺 𝐵 )  =  𝐵 ) | 
						
							| 17 | 7 13 16 | 3eqtrd | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) )  =  𝐵 ) |