Step |
Hyp |
Ref |
Expression |
1 |
|
abldiv.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
abldiv.3 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
3 |
|
id |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
4 |
3
|
3anidm12 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
5 |
1 2
|
ablodivdiv |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) ) |
6 |
4 5
|
sylan2 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) ) |
7 |
6
|
3impb |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) ) |
8 |
|
ablogrpo |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) |
9 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
10 |
1 2 9
|
grpodivid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐴 ) = ( GId ‘ 𝐺 ) ) |
11 |
8 10
|
sylan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐴 ) = ( GId ‘ 𝐺 ) ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐴 ) = ( GId ‘ 𝐺 ) ) |
13 |
12
|
oveq1d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) = ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) ) |
14 |
1 9
|
grpolid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) = 𝐵 ) |
15 |
8 14
|
sylan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) = 𝐵 ) |
16 |
15
|
3adant2 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) = 𝐵 ) |
17 |
7 13 16
|
3eqtrd |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = 𝐵 ) |