Metamath Proof Explorer


Theorem ablonncan

Description: Cancellation law for group division. ( nncan analog.) (Contributed by NM, 7-Mar-2008) (New usage is discouraged.)

Ref Expression
Hypotheses abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺 )
Assertion ablonncan ( ( 𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 abldiv.1 𝑋 = ran 𝐺
2 abldiv.3 𝐷 = ( /𝑔𝐺 )
3 id ( ( 𝐴𝑋𝐴𝑋𝐵𝑋 ) → ( 𝐴𝑋𝐴𝑋𝐵𝑋 ) )
4 3 3anidm12 ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐴𝑋𝐴𝑋𝐵𝑋 ) )
5 1 2 ablodivdiv ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴𝑋𝐴𝑋𝐵𝑋 ) ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) )
6 4 5 sylan2 ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) )
7 6 3impb ( ( 𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) )
8 ablogrpo ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp )
9 eqid ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 )
10 1 2 9 grpodivid ( ( 𝐺 ∈ GrpOp ∧ 𝐴𝑋 ) → ( 𝐴 𝐷 𝐴 ) = ( GId ‘ 𝐺 ) )
11 8 10 sylan ( ( 𝐺 ∈ AbelOp ∧ 𝐴𝑋 ) → ( 𝐴 𝐷 𝐴 ) = ( GId ‘ 𝐺 ) )
12 11 3adant3 ( ( 𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐴 ) = ( GId ‘ 𝐺 ) )
13 12 oveq1d ( ( 𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) = ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) )
14 1 9 grpolid ( ( 𝐺 ∈ GrpOp ∧ 𝐵𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) = 𝐵 )
15 8 14 sylan ( ( 𝐺 ∈ AbelOp ∧ 𝐵𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) = 𝐵 )
16 15 3adant2 ( ( 𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) = 𝐵 )
17 7 13 16 3eqtrd ( ( 𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = 𝐵 )