Step |
Hyp |
Ref |
Expression |
1 |
|
abldiv.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
abldiv.3 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
3 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
4 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) |
5 |
|
ablogrpo |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) |
6 |
1 2
|
grpodivcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) |
7 |
5 6
|
syl3an1 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) |
8 |
7
|
3adant3r2 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) |
9 |
3 4 8
|
3jca |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) ) |
10 |
1 2
|
ablodiv32 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐶 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 ( 𝐴 𝐷 𝐶 ) ) = ( ( 𝐴 𝐷 ( 𝐴 𝐷 𝐶 ) ) 𝐷 𝐵 ) ) |
11 |
9 10
|
syldan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 ( 𝐴 𝐷 𝐶 ) ) = ( ( 𝐴 𝐷 ( 𝐴 𝐷 𝐶 ) ) 𝐷 𝐵 ) ) |
12 |
1 2
|
ablonncan |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐶 ) ) = 𝐶 ) |
13 |
12
|
3adant3r2 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐶 ) ) = 𝐶 ) |
14 |
13
|
oveq1d |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 ( 𝐴 𝐷 𝐶 ) ) 𝐷 𝐵 ) = ( 𝐶 𝐷 𝐵 ) ) |
15 |
11 14
|
eqtrd |
⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐵 ) 𝐷 ( 𝐴 𝐷 𝐶 ) ) = ( 𝐶 𝐷 𝐵 ) ) |