| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abldiv.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | abldiv.3 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 3 |  | simpr1 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 4 |  | simpr2 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  𝐵  ∈  𝑋 ) | 
						
							| 5 |  | ablogrpo | ⊢ ( 𝐺  ∈  AbelOp  →  𝐺  ∈  GrpOp ) | 
						
							| 6 | 1 2 | grpodivcl | ⊢ ( ( 𝐺  ∈  GrpOp  ∧  𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐶 )  ∈  𝑋 ) | 
						
							| 7 | 5 6 | syl3an1 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐶 )  ∈  𝑋 ) | 
						
							| 8 | 7 | 3adant3r2 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 𝐶 )  ∈  𝑋 ) | 
						
							| 9 | 3 4 8 | 3jca | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐶 )  ∈  𝑋 ) ) | 
						
							| 10 | 1 2 | ablodiv32 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  ( 𝐴 𝐷 𝐶 )  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐷 ( 𝐴 𝐷 𝐶 ) )  =  ( ( 𝐴 𝐷 ( 𝐴 𝐷 𝐶 ) ) 𝐷 𝐵 ) ) | 
						
							| 11 | 9 10 | syldan | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐷 ( 𝐴 𝐷 𝐶 ) )  =  ( ( 𝐴 𝐷 ( 𝐴 𝐷 𝐶 ) ) 𝐷 𝐵 ) ) | 
						
							| 12 | 1 2 | ablonncan | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴 𝐷 ( 𝐴 𝐷 𝐶 ) )  =  𝐶 ) | 
						
							| 13 | 12 | 3adant3r2 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 ( 𝐴 𝐷 𝐶 ) )  =  𝐶 ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 ( 𝐴 𝐷 𝐶 ) ) 𝐷 𝐵 )  =  ( 𝐶 𝐷 𝐵 ) ) | 
						
							| 15 | 11 14 | eqtrd | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐷 ( 𝐴 𝐷 𝐶 ) )  =  ( 𝐶 𝐷 𝐵 ) ) |