| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsubadd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ablsubadd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | ablsubadd.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐺  ∈  Abel ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  𝐵 ) | 
						
							| 7 | 1 2 3 | abladdsub | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑋  +  𝑌 )  −  𝑋 )  =  ( ( 𝑋  −  𝑋 )  +  𝑌 ) ) | 
						
							| 8 | 4 5 6 5 7 | syl13anc | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  +  𝑌 )  −  𝑋 )  =  ( ( 𝑋  −  𝑋 )  +  𝑌 ) ) | 
						
							| 9 |  | ablgrp | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp ) | 
						
							| 10 | 4 9 | syl | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐺  ∈  Grp ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 12 | 1 11 3 | grpsubid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  −  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 13 | 10 5 12 | syl2anc | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  −  𝑋 )  +  𝑌 )  =  ( ( 0g ‘ 𝐺 )  +  𝑌 ) ) | 
						
							| 15 | 1 2 11 | grplid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( ( 0g ‘ 𝐺 )  +  𝑌 )  =  𝑌 ) | 
						
							| 16 | 10 6 15 | syl2anc | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 0g ‘ 𝐺 )  +  𝑌 )  =  𝑌 ) | 
						
							| 17 | 8 14 16 | 3eqtrd | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  +  𝑌 )  −  𝑋 )  =  𝑌 ) |