Metamath Proof Explorer


Theorem ablpncan2

Description: Cancellation law for subtraction. (Contributed by NM, 2-Oct-2014)

Ref Expression
Hypotheses ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
ablsubadd.p + = ( +g𝐺 )
ablsubadd.m = ( -g𝐺 )
Assertion ablpncan2 ( ( 𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 + 𝑌 ) 𝑋 ) = 𝑌 )

Proof

Step Hyp Ref Expression
1 ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
2 ablsubadd.p + = ( +g𝐺 )
3 ablsubadd.m = ( -g𝐺 )
4 simp1 ( ( 𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵 ) → 𝐺 ∈ Abel )
5 simp2 ( ( 𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵 ) → 𝑋𝐵 )
6 simp3 ( ( 𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵 ) → 𝑌𝐵 )
7 1 2 3 abladdsub ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑋𝐵 ) ) → ( ( 𝑋 + 𝑌 ) 𝑋 ) = ( ( 𝑋 𝑋 ) + 𝑌 ) )
8 4 5 6 5 7 syl13anc ( ( 𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 + 𝑌 ) 𝑋 ) = ( ( 𝑋 𝑋 ) + 𝑌 ) )
9 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
10 4 9 syl ( ( 𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵 ) → 𝐺 ∈ Grp )
11 eqid ( 0g𝐺 ) = ( 0g𝐺 )
12 1 11 3 grpsubid ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) = ( 0g𝐺 ) )
13 10 5 12 syl2anc ( ( 𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑋 ) = ( 0g𝐺 ) )
14 13 oveq1d ( ( 𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑋 ) + 𝑌 ) = ( ( 0g𝐺 ) + 𝑌 ) )
15 1 2 11 grplid ( ( 𝐺 ∈ Grp ∧ 𝑌𝐵 ) → ( ( 0g𝐺 ) + 𝑌 ) = 𝑌 )
16 10 6 15 syl2anc ( ( 𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 0g𝐺 ) + 𝑌 ) = 𝑌 )
17 8 14 16 3eqtrd ( ( 𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 + 𝑌 ) 𝑋 ) = 𝑌 )