Step |
Hyp |
Ref |
Expression |
1 |
|
ablsubadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablsubadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
ablsubadd.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
simp1 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐺 ∈ Abel ) |
5 |
|
simp2 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
6 |
|
simp3 |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
7 |
1 2 3
|
abladdsub |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − 𝑋 ) = ( ( 𝑋 − 𝑋 ) + 𝑌 ) ) |
8 |
4 5 6 5 7
|
syl13anc |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) − 𝑋 ) = ( ( 𝑋 − 𝑋 ) + 𝑌 ) ) |
9 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
10 |
4 9
|
syl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
12 |
1 11 3
|
grpsubid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
13 |
10 5 12
|
syl2anc |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
14 |
13
|
oveq1d |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 − 𝑋 ) + 𝑌 ) = ( ( 0g ‘ 𝐺 ) + 𝑌 ) ) |
15 |
1 2 11
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
16 |
10 6 15
|
syl2anc |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
17 |
8 14 16
|
3eqtrd |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) − 𝑋 ) = 𝑌 ) |