Metamath Proof Explorer


Theorem ablpncan3

Description: A cancellation law for commutative groups. (Contributed by NM, 23-Mar-2015)

Ref Expression
Hypotheses ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
ablsubadd.p + = ( +g𝐺 )
ablsubadd.m = ( -g𝐺 )
Assertion ablpncan3 ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 + ( 𝑌 𝑋 ) ) = 𝑌 )

Proof

Step Hyp Ref Expression
1 ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
2 ablsubadd.p + = ( +g𝐺 )
3 ablsubadd.m = ( -g𝐺 )
4 simpl ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝐺 ∈ Abel )
5 simprl ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝑋𝐵 )
6 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
7 6 adantr ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝐺 ∈ Grp )
8 simprr ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵 ) ) → 𝑌𝐵 )
9 1 3 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝑌𝐵𝑋𝐵 ) → ( 𝑌 𝑋 ) ∈ 𝐵 )
10 7 8 5 9 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑌 𝑋 ) ∈ 𝐵 )
11 1 2 ablcom ( ( 𝐺 ∈ Abel ∧ 𝑋𝐵 ∧ ( 𝑌 𝑋 ) ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 𝑋 ) ) = ( ( 𝑌 𝑋 ) + 𝑋 ) )
12 4 5 10 11 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 + ( 𝑌 𝑋 ) ) = ( ( 𝑌 𝑋 ) + 𝑋 ) )
13 1 2 3 grpnpcan ( ( 𝐺 ∈ Grp ∧ 𝑌𝐵𝑋𝐵 ) → ( ( 𝑌 𝑋 ) + 𝑋 ) = 𝑌 )
14 7 8 5 13 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝑌 𝑋 ) + 𝑋 ) = 𝑌 )
15 12 14 eqtrd ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝑋 + ( 𝑌 𝑋 ) ) = 𝑌 )