Step |
Hyp |
Ref |
Expression |
1 |
|
ablsubadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablsubadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
ablsubadd.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
simpl |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 ∈ Abel ) |
5 |
|
simprl |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
6 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
7 |
6
|
adantr |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
8 |
|
simprr |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
9 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 − 𝑋 ) ∈ 𝐵 ) |
10 |
7 8 5 9
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑌 − 𝑋 ) ∈ 𝐵 ) |
11 |
1 2
|
ablcom |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑌 − 𝑋 ) ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 − 𝑋 ) ) = ( ( 𝑌 − 𝑋 ) + 𝑋 ) ) |
12 |
4 5 10 11
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 + ( 𝑌 − 𝑋 ) ) = ( ( 𝑌 − 𝑋 ) + 𝑋 ) ) |
13 |
1 2 3
|
grpnpcan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑌 − 𝑋 ) + 𝑋 ) = 𝑌 ) |
14 |
7 8 5 13
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑌 − 𝑋 ) + 𝑋 ) = 𝑌 ) |
15 |
12 14
|
eqtrd |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 + ( 𝑌 − 𝑋 ) ) = 𝑌 ) |