| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsubadd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ablsubadd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | ablsubadd.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐺  ∈  Abel ) | 
						
							| 5 |  | simprl | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | ablgrp | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐺  ∈  Grp ) | 
						
							| 8 |  | simprr | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 9 | 1 3 | grpsubcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝑌  −  𝑋 )  ∈  𝐵 ) | 
						
							| 10 | 7 8 5 9 | syl3anc | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑌  −  𝑋 )  ∈  𝐵 ) | 
						
							| 11 | 1 2 | ablcom | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑋  ∈  𝐵  ∧  ( 𝑌  −  𝑋 )  ∈  𝐵 )  →  ( 𝑋  +  ( 𝑌  −  𝑋 ) )  =  ( ( 𝑌  −  𝑋 )  +  𝑋 ) ) | 
						
							| 12 | 4 5 10 11 | syl3anc | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  +  ( 𝑌  −  𝑋 ) )  =  ( ( 𝑌  −  𝑋 )  +  𝑋 ) ) | 
						
							| 13 | 1 2 3 | grpnpcan | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑌  −  𝑋 )  +  𝑋 )  =  𝑌 ) | 
						
							| 14 | 7 8 5 13 | syl3anc | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑌  −  𝑋 )  +  𝑋 )  =  𝑌 ) | 
						
							| 15 | 12 14 | eqtrd | ⊢ ( ( 𝐺  ∈  Abel  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  +  ( 𝑌  −  𝑋 ) )  =  𝑌 ) |