| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablpropd.1 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐾 ) ) | 
						
							| 2 |  | ablpropd.2 | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 3 |  | ablpropd.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 4 | 1 2 3 | grppropd | ⊢ ( 𝜑  →  ( 𝐾  ∈  Grp  ↔  𝐿  ∈  Grp ) ) | 
						
							| 5 | 1 2 3 | cmnpropd | ⊢ ( 𝜑  →  ( 𝐾  ∈  CMnd  ↔  𝐿  ∈  CMnd ) ) | 
						
							| 6 | 4 5 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐾  ∈  Grp  ∧  𝐾  ∈  CMnd )  ↔  ( 𝐿  ∈  Grp  ∧  𝐿  ∈  CMnd ) ) ) | 
						
							| 7 |  | isabl | ⊢ ( 𝐾  ∈  Abel  ↔  ( 𝐾  ∈  Grp  ∧  𝐾  ∈  CMnd ) ) | 
						
							| 8 |  | isabl | ⊢ ( 𝐿  ∈  Abel  ↔  ( 𝐿  ∈  Grp  ∧  𝐿  ∈  CMnd ) ) | 
						
							| 9 | 6 7 8 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝐾  ∈  Abel  ↔  𝐿  ∈  Abel ) ) |