| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablsub2inv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
ablsub2inv.m |
⊢ − = ( -g ‘ 𝐺 ) |
| 3 |
|
ablsub2inv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
| 4 |
|
ablsub2inv.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 5 |
|
ablsub2inv.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
ablsub2inv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 8 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 10 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 11 |
9 5 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 12 |
1 7 2 3 9 11 6
|
grpsubinv |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) − ( 𝑁 ‘ 𝑌 ) ) = ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) ) |
| 13 |
1 7
|
ablcom |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 14 |
4 11 6 13
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 15 |
1 3
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 16 |
9 6 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 17 |
16
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) = ( 𝑌 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 18 |
14 17
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) = ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 19 |
1 3
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 20 |
9 6 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) |
| 21 |
1 7 3
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) = ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 22 |
9 5 20 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) = ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 23 |
18 22
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) = ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) ) |
| 24 |
1 7 3 2
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) |
| 25 |
5 6 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑁 ‘ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝑁 ‘ 𝑌 ) ) ) ) |
| 27 |
23 26
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑌 ) = ( 𝑁 ‘ ( 𝑋 − 𝑌 ) ) ) |
| 28 |
1 2 3
|
grpinvsub |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |
| 29 |
9 5 6 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |
| 30 |
12 27 29
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) − ( 𝑁 ‘ 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |