Metamath Proof Explorer


Theorem ablsubadd

Description: Relationship between Abelian group subtraction and addition. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
ablsubadd.p + = ( +g𝐺 )
ablsubadd.m = ( -g𝐺 )
Assertion ablsubadd ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) = 𝑍 ↔ ( 𝑌 + 𝑍 ) = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
2 ablsubadd.p + = ( +g𝐺 )
3 ablsubadd.m = ( -g𝐺 )
4 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
5 1 2 3 grpsubadd ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) = 𝑍 ↔ ( 𝑍 + 𝑌 ) = 𝑋 ) )
6 4 5 sylan ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) = 𝑍 ↔ ( 𝑍 + 𝑌 ) = 𝑋 ) )
7 1 2 ablcom ( ( 𝐺 ∈ Abel ∧ 𝑌𝐵𝑍𝐵 ) → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) )
8 7 3adant3r1 ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) )
9 8 eqeq1d ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑌 + 𝑍 ) = 𝑋 ↔ ( 𝑍 + 𝑌 ) = 𝑋 ) )
10 6 9 bitr4d ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) = 𝑍 ↔ ( 𝑌 + 𝑍 ) = 𝑋 ) )