Metamath Proof Explorer


Theorem ablsubadd23

Description: Commutative/associative law for addition and subtraction in abelian groups. ( subadd23d analog.) (Contributed by AV, 2-Mar-2025)

Ref Expression
Hypotheses ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
ablsubadd.p + = ( +g𝐺 )
ablsubadd.m = ( -g𝐺 )
Assertion ablsubadd23 ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑍 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
2 ablsubadd.p + = ( +g𝐺 )
3 ablsubadd.m = ( -g𝐺 )
4 3ancomb ( ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ↔ ( 𝑋𝐵𝑍𝐵𝑌𝐵 ) )
5 4 biimpi ( ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) → ( 𝑋𝐵𝑍𝐵𝑌𝐵 ) )
6 1 2 3 abladdsub ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑍𝐵𝑌𝐵 ) ) → ( ( 𝑋 + 𝑍 ) 𝑌 ) = ( ( 𝑋 𝑌 ) + 𝑍 ) )
7 5 6 sylan2 ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 + 𝑍 ) 𝑌 ) = ( ( 𝑋 𝑌 ) + 𝑍 ) )
8 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
9 1 2 3 grpaddsubass ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑍𝐵𝑌𝐵 ) ) → ( ( 𝑋 + 𝑍 ) 𝑌 ) = ( 𝑋 + ( 𝑍 𝑌 ) ) )
10 8 5 9 syl2an ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 + 𝑍 ) 𝑌 ) = ( 𝑋 + ( 𝑍 𝑌 ) ) )
11 7 10 eqtr3d ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑍 𝑌 ) ) )