Metamath Proof Explorer


Theorem ablsubaddsub

Description: Double subtraction and addition in abelian groups. ( cnambpcma analog.) (Contributed by AV, 3-Mar-2025)

Ref Expression
Hypotheses ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
ablsubadd.p + = ( +g𝐺 )
ablsubadd.m = ( -g𝐺 )
Assertion ablsubaddsub ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( ( 𝑋 𝑌 ) + 𝑍 ) 𝑋 ) = ( 𝑍 𝑌 ) )

Proof

Step Hyp Ref Expression
1 ablsubadd.b 𝐵 = ( Base ‘ 𝐺 )
2 ablsubadd.p + = ( +g𝐺 )
3 ablsubadd.m = ( -g𝐺 )
4 1 2 3 ablsubadd23 ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑍 𝑌 ) ) )
5 4 oveq1d ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( ( 𝑋 𝑌 ) + 𝑍 ) 𝑋 ) = ( ( 𝑋 + ( 𝑍 𝑌 ) ) 𝑋 ) )
6 simpl ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐺 ∈ Abel )
7 simpr1 ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑋𝐵 )
8 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
9 8 adantr ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐺 ∈ Grp )
10 simpr3 ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
11 simpr2 ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
12 1 3 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝑍𝐵𝑌𝐵 ) → ( 𝑍 𝑌 ) ∈ 𝐵 )
13 9 10 11 12 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑍 𝑌 ) ∈ 𝐵 )
14 1 2 ablcom ( ( 𝐺 ∈ Abel ∧ 𝑋𝐵 ∧ ( 𝑍 𝑌 ) ∈ 𝐵 ) → ( 𝑋 + ( 𝑍 𝑌 ) ) = ( ( 𝑍 𝑌 ) + 𝑋 ) )
15 6 7 13 14 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 + ( 𝑍 𝑌 ) ) = ( ( 𝑍 𝑌 ) + 𝑋 ) )
16 15 oveq1d ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 + ( 𝑍 𝑌 ) ) 𝑋 ) = ( ( ( 𝑍 𝑌 ) + 𝑋 ) 𝑋 ) )
17 1 2 3 grpaddsubass ( ( 𝐺 ∈ Grp ∧ ( ( 𝑍 𝑌 ) ∈ 𝐵𝑋𝐵𝑋𝐵 ) ) → ( ( ( 𝑍 𝑌 ) + 𝑋 ) 𝑋 ) = ( ( 𝑍 𝑌 ) + ( 𝑋 𝑋 ) ) )
18 9 13 7 7 17 syl13anc ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( ( 𝑍 𝑌 ) + 𝑋 ) 𝑋 ) = ( ( 𝑍 𝑌 ) + ( 𝑋 𝑋 ) ) )
19 eqid ( 0g𝐺 ) = ( 0g𝐺 )
20 1 19 3 grpsubid ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑋 𝑋 ) = ( 0g𝐺 ) )
21 9 7 20 syl2anc ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝑋 ) = ( 0g𝐺 ) )
22 21 oveq2d ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑍 𝑌 ) + ( 𝑋 𝑋 ) ) = ( ( 𝑍 𝑌 ) + ( 0g𝐺 ) ) )
23 1 2 19 9 13 grpridd ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑍 𝑌 ) + ( 0g𝐺 ) ) = ( 𝑍 𝑌 ) )
24 18 22 23 3eqtrd ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( ( 𝑍 𝑌 ) + 𝑋 ) 𝑋 ) = ( 𝑍 𝑌 ) )
25 5 16 24 3eqtrd ( ( 𝐺 ∈ Abel ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( ( 𝑋 𝑌 ) + 𝑍 ) 𝑋 ) = ( 𝑍 𝑌 ) )