Step |
Hyp |
Ref |
Expression |
1 |
|
ablsubadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablsubadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
ablsubadd.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
ablsubsub.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
5 |
|
ablsubsub.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
ablsubsub.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
ablsubsub.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
10 |
1 2 3
|
grpsubsub |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 − ( 𝑌 − 𝑍 ) ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |
11 |
9 5 6 7 10
|
syl13anc |
⊢ ( 𝜑 → ( 𝑋 − ( 𝑌 − 𝑍 ) ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |
12 |
1 2 3
|
grpaddsubass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) − 𝑌 ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |
13 |
9 5 7 6 12
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑍 ) − 𝑌 ) = ( 𝑋 + ( 𝑍 − 𝑌 ) ) ) |
14 |
1 2 3
|
abladdsub |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) − 𝑌 ) = ( ( 𝑋 − 𝑌 ) + 𝑍 ) ) |
15 |
4 5 7 6 14
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑍 ) − 𝑌 ) = ( ( 𝑋 − 𝑌 ) + 𝑍 ) ) |
16 |
11 13 15
|
3eqtr2d |
⊢ ( 𝜑 → ( 𝑋 − ( 𝑌 − 𝑍 ) ) = ( ( 𝑋 − 𝑌 ) + 𝑍 ) ) |