Metamath Proof Explorer


Theorem ablsubsub23

Description: Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses ablsubsub23.v 𝑉 = ( Base ‘ 𝐺 )
ablsubsub23.m = ( -g𝐺 )
Assertion ablsubsub23 ( ( 𝐺 ∈ Abel ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) → ( ( 𝐴 𝐵 ) = 𝐶 ↔ ( 𝐴 𝐶 ) = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ablsubsub23.v 𝑉 = ( Base ‘ 𝐺 )
2 ablsubsub23.m = ( -g𝐺 )
3 simpl ( ( 𝐺 ∈ Abel ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) → 𝐺 ∈ Abel )
4 simpr3 ( ( 𝐺 ∈ Abel ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) → 𝐶𝑉 )
5 simpr2 ( ( 𝐺 ∈ Abel ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) → 𝐵𝑉 )
6 eqid ( +g𝐺 ) = ( +g𝐺 )
7 1 6 ablcom ( ( 𝐺 ∈ Abel ∧ 𝐶𝑉𝐵𝑉 ) → ( 𝐶 ( +g𝐺 ) 𝐵 ) = ( 𝐵 ( +g𝐺 ) 𝐶 ) )
8 3 4 5 7 syl3anc ( ( 𝐺 ∈ Abel ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) → ( 𝐶 ( +g𝐺 ) 𝐵 ) = ( 𝐵 ( +g𝐺 ) 𝐶 ) )
9 8 eqeq1d ( ( 𝐺 ∈ Abel ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) → ( ( 𝐶 ( +g𝐺 ) 𝐵 ) = 𝐴 ↔ ( 𝐵 ( +g𝐺 ) 𝐶 ) = 𝐴 ) )
10 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
11 1 6 2 grpsubadd ( ( 𝐺 ∈ Grp ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) → ( ( 𝐴 𝐵 ) = 𝐶 ↔ ( 𝐶 ( +g𝐺 ) 𝐵 ) = 𝐴 ) )
12 10 11 sylan ( ( 𝐺 ∈ Abel ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) → ( ( 𝐴 𝐵 ) = 𝐶 ↔ ( 𝐶 ( +g𝐺 ) 𝐵 ) = 𝐴 ) )
13 3ancomb ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ↔ ( 𝐴𝑉𝐶𝑉𝐵𝑉 ) )
14 13 biimpi ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) → ( 𝐴𝑉𝐶𝑉𝐵𝑉 ) )
15 1 6 2 grpsubadd ( ( 𝐺 ∈ Grp ∧ ( 𝐴𝑉𝐶𝑉𝐵𝑉 ) ) → ( ( 𝐴 𝐶 ) = 𝐵 ↔ ( 𝐵 ( +g𝐺 ) 𝐶 ) = 𝐴 ) )
16 10 14 15 syl2an ( ( 𝐺 ∈ Abel ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) → ( ( 𝐴 𝐶 ) = 𝐵 ↔ ( 𝐵 ( +g𝐺 ) 𝐶 ) = 𝐴 ) )
17 9 12 16 3bitr4d ( ( 𝐺 ∈ Abel ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) → ( ( 𝐴 𝐵 ) = 𝐶 ↔ ( 𝐴 𝐶 ) = 𝐵 ) )