Step |
Hyp |
Ref |
Expression |
1 |
|
ablsubsub23.v |
⊢ 𝑉 = ( Base ‘ 𝐺 ) |
2 |
|
ablsubsub23.m |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
simpl |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐺 ∈ Abel ) |
4 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) |
5 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
7 |
1 6
|
ablcom |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐶 ( +g ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝐺 ) 𝐶 ) ) |
8 |
3 4 5 7
|
syl3anc |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐶 ( +g ‘ 𝐺 ) 𝐵 ) = ( 𝐵 ( +g ‘ 𝐺 ) 𝐶 ) ) |
9 |
8
|
eqeq1d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐶 ( +g ‘ 𝐺 ) 𝐵 ) = 𝐴 ↔ ( 𝐵 ( +g ‘ 𝐺 ) 𝐶 ) = 𝐴 ) ) |
10 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
11 |
1 6 2
|
grpsubadd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐶 ( +g ‘ 𝐺 ) 𝐵 ) = 𝐴 ) ) |
12 |
10 11
|
sylan |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐶 ( +g ‘ 𝐺 ) 𝐵 ) = 𝐴 ) ) |
13 |
|
3ancomb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ↔ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
14 |
13
|
biimpi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
15 |
1 6 2
|
grpsubadd |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐶 ) = 𝐵 ↔ ( 𝐵 ( +g ‘ 𝐺 ) 𝐶 ) = 𝐴 ) ) |
16 |
10 14 15
|
syl2an |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐶 ) = 𝐵 ↔ ( 𝐵 ( +g ‘ 𝐺 ) 𝐶 ) = 𝐴 ) ) |
17 |
9 12 16
|
3bitr4d |
⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐴 − 𝐶 ) = 𝐵 ) ) |