| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsubadd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ablsubadd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | ablsubadd.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | ablsubsub.g | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
						
							| 5 |  | ablsubsub.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | ablsubsub.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | ablsubsub.z | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
						
							| 8 |  | ablgrp | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 10 | 1 3 | grpsubcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  ∈  𝐵 ) | 
						
							| 11 | 9 5 6 10 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  −  𝑌 )  ∈  𝐵 ) | 
						
							| 12 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 13 | 1 2 12 3 | grpsubval | ⊢ ( ( ( 𝑋  −  𝑌 )  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( ( 𝑋  −  𝑌 )  −  𝑍 )  =  ( ( 𝑋  −  𝑌 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) | 
						
							| 14 | 11 7 13 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝑌 )  −  𝑍 )  =  ( ( 𝑋  −  𝑌 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) | 
						
							| 15 | 1 12 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑍  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑍 )  ∈  𝐵 ) | 
						
							| 16 | 9 7 15 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ 𝐺 ) ‘ 𝑍 )  ∈  𝐵 ) | 
						
							| 17 | 1 2 3 4 5 6 16 | ablsubsub | ⊢ ( 𝜑  →  ( 𝑋  −  ( 𝑌  −  ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) )  =  ( ( 𝑋  −  𝑌 )  +  ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) | 
						
							| 18 | 1 2 3 12 9 6 7 | grpsubinv | ⊢ ( 𝜑  →  ( 𝑌  −  ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) )  =  ( 𝑌  +  𝑍 ) ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( 𝜑  →  ( 𝑋  −  ( 𝑌  −  ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) )  =  ( 𝑋  −  ( 𝑌  +  𝑍 ) ) ) | 
						
							| 20 | 14 17 19 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( 𝑋  −  𝑌 )  −  𝑍 )  =  ( 𝑋  −  ( 𝑌  +  𝑍 ) ) ) |