Step |
Hyp |
Ref |
Expression |
1 |
|
ablsubadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablsubadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
ablsubadd.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
ablsubsub.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
5 |
|
ablsubsub.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
ablsubsub.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
ablsubsub.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
10 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) ∈ 𝐵 ) |
11 |
9 5 6 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ 𝐵 ) |
12 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
13 |
1 2 12 3
|
grpsubval |
⊢ ( ( ( 𝑋 − 𝑌 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 − 𝑌 ) − 𝑍 ) = ( ( 𝑋 − 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
14 |
11 7 13
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) − 𝑍 ) = ( ( 𝑋 − 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
15 |
1 12
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
16 |
9 7 15
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
17 |
1 2 3 4 5 6 16
|
ablsubsub |
⊢ ( 𝜑 → ( 𝑋 − ( 𝑌 − ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) = ( ( 𝑋 − 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
18 |
1 2 3 12 9 6 7
|
grpsubinv |
⊢ ( 𝜑 → ( 𝑌 − ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 + 𝑍 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 − ( 𝑌 − ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) = ( 𝑋 − ( 𝑌 + 𝑍 ) ) ) |
20 |
14 17 19
|
3eqtr2d |
⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) − 𝑍 ) = ( 𝑋 − ( 𝑌 + 𝑍 ) ) ) |