Metamath Proof Explorer


Theorem abn0

Description: Nonempty class abstraction. See also ab0 . (Contributed by NM, 26-Dec-1996) (Proof shortened by Mario Carneiro, 11-Nov-2016) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 30-Aug-2024)

Ref Expression
Assertion abn0 ( { 𝑥𝜑 } ≠ ∅ ↔ ∃ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 ab0 ( { 𝑥𝜑 } = ∅ ↔ ∀ 𝑥 ¬ 𝜑 )
2 1 notbii ( ¬ { 𝑥𝜑 } = ∅ ↔ ¬ ∀ 𝑥 ¬ 𝜑 )
3 df-ne ( { 𝑥𝜑 } ≠ ∅ ↔ ¬ { 𝑥𝜑 } = ∅ )
4 df-ex ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 )
5 2 3 4 3bitr4i ( { 𝑥𝜑 } ≠ ∅ ↔ ∃ 𝑥 𝜑 )