Metamath Proof Explorer


Theorem abn0OLD

Description: Obsolete version of abn0 as of 30-Aug-2024. (Contributed by NM, 26-Dec-1996) (Proof shortened by Mario Carneiro, 11-Nov-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion abn0OLD ( { 𝑥𝜑 } ≠ ∅ ↔ ∃ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 nfab1 𝑥 { 𝑥𝜑 }
2 1 n0f ( { 𝑥𝜑 } ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ { 𝑥𝜑 } )
3 abid ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝜑 )
4 3 exbii ( ∃ 𝑥 𝑥 ∈ { 𝑥𝜑 } ↔ ∃ 𝑥 𝜑 )
5 2 4 bitri ( { 𝑥𝜑 } ≠ ∅ ↔ ∃ 𝑥 𝜑 )