| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vprc |
⊢ ¬ V ∈ V |
| 2 |
|
alral |
⊢ ( ∀ 𝑥 ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ∀ 𝑥 ∈ V ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) ) |
| 3 |
|
rexv |
⊢ ( ∃ 𝑥 ∈ V 𝑦 = 𝐹 ↔ ∃ 𝑥 𝑦 = 𝐹 ) |
| 4 |
3
|
bicomi |
⊢ ( ∃ 𝑥 𝑦 = 𝐹 ↔ ∃ 𝑥 ∈ V 𝑦 = 𝐹 ) |
| 5 |
4
|
abbii |
⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝐹 } |
| 6 |
5
|
eleq1i |
⊢ ( { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V ↔ { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝐹 } ∈ V ) |
| 7 |
6
|
biimpi |
⊢ ( { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V → { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝐹 } ∈ V ) |
| 8 |
|
abnexg |
⊢ ( ∀ 𝑥 ∈ V ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ( { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝐹 } ∈ V → V ∈ V ) ) |
| 9 |
2 7 8
|
syl2im |
⊢ ( ∀ 𝑥 ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ( { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V → V ∈ V ) ) |
| 10 |
1 9
|
mtoi |
⊢ ( ∀ 𝑥 ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ¬ { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V ) |