Metamath Proof Explorer


Theorem abnex

Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex and pwnex . See the comment of abnexg . (Contributed by BJ, 2-May-2021)

Ref Expression
Assertion abnex ( ∀ 𝑥 ( 𝐹𝑉𝑥𝐹 ) → ¬ { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V )

Proof

Step Hyp Ref Expression
1 vprc ¬ V ∈ V
2 alral ( ∀ 𝑥 ( 𝐹𝑉𝑥𝐹 ) → ∀ 𝑥 ∈ V ( 𝐹𝑉𝑥𝐹 ) )
3 rexv ( ∃ 𝑥 ∈ V 𝑦 = 𝐹 ↔ ∃ 𝑥 𝑦 = 𝐹 )
4 3 bicomi ( ∃ 𝑥 𝑦 = 𝐹 ↔ ∃ 𝑥 ∈ V 𝑦 = 𝐹 )
5 4 abbii { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝐹 }
6 5 eleq1i ( { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V ↔ { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝐹 } ∈ V )
7 6 biimpi ( { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V → { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝐹 } ∈ V )
8 abnexg ( ∀ 𝑥 ∈ V ( 𝐹𝑉𝑥𝐹 ) → ( { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = 𝐹 } ∈ V → V ∈ V ) )
9 2 7 8 syl2im ( ∀ 𝑥 ( 𝐹𝑉𝑥𝐹 ) → ( { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V → V ∈ V ) )
10 1 9 mtoi ( ∀ 𝑥 ( 𝐹𝑉𝑥𝐹 ) → ¬ { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝐹 } ∈ V )