| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniexg |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐹 } ∈ 𝑊 → ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐹 } ∈ V ) |
| 2 |
|
simpl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → 𝐹 ∈ 𝑉 ) |
| 3 |
2
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ∀ 𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 ) |
| 4 |
|
dfiun2g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 𝐹 = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐹 } ) |
| 5 |
4
|
eleq1d |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → ( ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V ↔ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐹 } ∈ V ) ) |
| 6 |
5
|
biimprd |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐹 ∈ 𝑉 → ( ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐹 } ∈ V → ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V ) ) |
| 7 |
3 6
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ( ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐹 } ∈ V → ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V ) ) |
| 8 |
|
simpr |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → 𝑥 ∈ 𝐹 ) |
| 9 |
8
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 ) |
| 10 |
|
iunid |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = 𝐴 |
| 11 |
|
snssi |
⊢ ( 𝑥 ∈ 𝐹 → { 𝑥 } ⊆ 𝐹 ) |
| 12 |
11
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → ∀ 𝑥 ∈ 𝐴 { 𝑥 } ⊆ 𝐹 ) |
| 13 |
|
ss2iun |
⊢ ( ∀ 𝑥 ∈ 𝐴 { 𝑥 } ⊆ 𝐹 → ∪ 𝑥 ∈ 𝐴 { 𝑥 } ⊆ ∪ 𝑥 ∈ 𝐴 𝐹 ) |
| 14 |
12 13
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → ∪ 𝑥 ∈ 𝐴 { 𝑥 } ⊆ ∪ 𝑥 ∈ 𝐴 𝐹 ) |
| 15 |
10 14
|
eqsstrrid |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝐹 → 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹 ) |
| 16 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹 ∧ ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V ) → 𝐴 ∈ V ) |
| 17 |
16
|
ex |
⊢ ( 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 𝐹 → ( ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V → 𝐴 ∈ V ) ) |
| 18 |
9 15 17
|
3syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ( ∪ 𝑥 ∈ 𝐴 𝐹 ∈ V → 𝐴 ∈ V ) ) |
| 19 |
7 18
|
syld |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ( ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐹 } ∈ V → 𝐴 ∈ V ) ) |
| 20 |
1 19
|
syl5 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ∈ 𝑉 ∧ 𝑥 ∈ 𝐹 ) → ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐹 } ∈ 𝑊 → 𝐴 ∈ V ) ) |