Metamath Proof Explorer


Theorem abnotataxb

Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)

Ref Expression
Hypotheses abnotataxb.1 ¬ 𝜑
abnotataxb.2 𝜓
Assertion abnotataxb ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 abnotataxb.1 ¬ 𝜑
2 abnotataxb.2 𝜓
3 2 1 pm3.2i ( 𝜓 ∧ ¬ 𝜑 )
4 3 olci ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( 𝜓 ∧ ¬ 𝜑 ) )
5 xor ( ¬ ( 𝜑𝜓 ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( 𝜓 ∧ ¬ 𝜑 ) ) )
6 4 5 mpbir ¬ ( 𝜑𝜓 )
7 df-xor ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
8 6 7 mpbir ( 𝜑𝜓 )