Metamath Proof Explorer
Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)
|
|
Ref |
Expression |
|
Hypotheses |
abnotataxb.1 |
⊢ ¬ 𝜑 |
|
|
abnotataxb.2 |
⊢ 𝜓 |
|
Assertion |
abnotataxb |
⊢ ( 𝜑 ⊻ 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abnotataxb.1 |
⊢ ¬ 𝜑 |
2 |
|
abnotataxb.2 |
⊢ 𝜓 |
3 |
2 1
|
pm3.2i |
⊢ ( 𝜓 ∧ ¬ 𝜑 ) |
4 |
3
|
olci |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( 𝜓 ∧ ¬ 𝜑 ) ) |
5 |
|
xor |
⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( 𝜓 ∧ ¬ 𝜑 ) ) ) |
6 |
4 5
|
mpbir |
⊢ ¬ ( 𝜑 ↔ 𝜓 ) |
7 |
|
df-xor |
⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ¬ ( 𝜑 ↔ 𝜓 ) ) |
8 |
6 7
|
mpbir |
⊢ ( 𝜑 ⊻ 𝜓 ) |