| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abrexco.1 | ⊢ 𝐵  ∈  V | 
						
							| 2 |  | abrexco.2 | ⊢ ( 𝑦  =  𝐵  →  𝐶  =  𝐷 ) | 
						
							| 3 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  𝐴 𝑧  =  𝐵 } 𝑥  =  𝐶  ↔  ∃ 𝑦 ( 𝑦  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  𝐴 𝑧  =  𝐵 }  ∧  𝑥  =  𝐶 ) ) | 
						
							| 4 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 5 |  | eqeq1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  =  𝐵  ↔  𝑦  =  𝐵 ) ) | 
						
							| 6 | 5 | rexbidv | ⊢ ( 𝑧  =  𝑦  →  ( ∃ 𝑤  ∈  𝐴 𝑧  =  𝐵  ↔  ∃ 𝑤  ∈  𝐴 𝑦  =  𝐵 ) ) | 
						
							| 7 | 4 6 | elab | ⊢ ( 𝑦  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  𝐴 𝑧  =  𝐵 }  ↔  ∃ 𝑤  ∈  𝐴 𝑦  =  𝐵 ) | 
						
							| 8 | 7 | anbi1i | ⊢ ( ( 𝑦  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  𝐴 𝑧  =  𝐵 }  ∧  𝑥  =  𝐶 )  ↔  ( ∃ 𝑤  ∈  𝐴 𝑦  =  𝐵  ∧  𝑥  =  𝐶 ) ) | 
						
							| 9 |  | r19.41v | ⊢ ( ∃ 𝑤  ∈  𝐴 ( 𝑦  =  𝐵  ∧  𝑥  =  𝐶 )  ↔  ( ∃ 𝑤  ∈  𝐴 𝑦  =  𝐵  ∧  𝑥  =  𝐶 ) ) | 
						
							| 10 | 8 9 | bitr4i | ⊢ ( ( 𝑦  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  𝐴 𝑧  =  𝐵 }  ∧  𝑥  =  𝐶 )  ↔  ∃ 𝑤  ∈  𝐴 ( 𝑦  =  𝐵  ∧  𝑥  =  𝐶 ) ) | 
						
							| 11 | 10 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  𝐴 𝑧  =  𝐵 }  ∧  𝑥  =  𝐶 )  ↔  ∃ 𝑦 ∃ 𝑤  ∈  𝐴 ( 𝑦  =  𝐵  ∧  𝑥  =  𝐶 ) ) | 
						
							| 12 | 3 11 | bitri | ⊢ ( ∃ 𝑦  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  𝐴 𝑧  =  𝐵 } 𝑥  =  𝐶  ↔  ∃ 𝑦 ∃ 𝑤  ∈  𝐴 ( 𝑦  =  𝐵  ∧  𝑥  =  𝐶 ) ) | 
						
							| 13 |  | rexcom4 | ⊢ ( ∃ 𝑤  ∈  𝐴 ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝑥  =  𝐶 )  ↔  ∃ 𝑦 ∃ 𝑤  ∈  𝐴 ( 𝑦  =  𝐵  ∧  𝑥  =  𝐶 ) ) | 
						
							| 14 | 12 13 | bitr4i | ⊢ ( ∃ 𝑦  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  𝐴 𝑧  =  𝐵 } 𝑥  =  𝐶  ↔  ∃ 𝑤  ∈  𝐴 ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝑥  =  𝐶 ) ) | 
						
							| 15 | 2 | eqeq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝑥  =  𝐶  ↔  𝑥  =  𝐷 ) ) | 
						
							| 16 | 1 15 | ceqsexv | ⊢ ( ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝑥  =  𝐶 )  ↔  𝑥  =  𝐷 ) | 
						
							| 17 | 16 | rexbii | ⊢ ( ∃ 𝑤  ∈  𝐴 ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝑥  =  𝐶 )  ↔  ∃ 𝑤  ∈  𝐴 𝑥  =  𝐷 ) | 
						
							| 18 | 14 17 | bitri | ⊢ ( ∃ 𝑦  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  𝐴 𝑧  =  𝐵 } 𝑥  =  𝐶  ↔  ∃ 𝑤  ∈  𝐴 𝑥  =  𝐷 ) | 
						
							| 19 | 18 | abbii | ⊢ { 𝑥  ∣  ∃ 𝑦  ∈  { 𝑧  ∣  ∃ 𝑤  ∈  𝐴 𝑧  =  𝐵 } 𝑥  =  𝐶 }  =  { 𝑥  ∣  ∃ 𝑤  ∈  𝐴 𝑥  =  𝐷 } |