Description: An image set from a finite set is finite. (Contributed by Mario Carneiro, 13-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abrexfi | ⊢ ( 𝐴 ∈ Fin → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | 1 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
| 3 | mptfi | ⊢ ( 𝐴 ∈ Fin → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ Fin ) | |
| 4 | rnfi | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ Fin → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ Fin ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ∈ Fin → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ Fin ) |
| 6 | 2 5 | eqeltrrid | ⊢ ( 𝐴 ∈ Fin → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ∈ Fin ) |