Metamath Proof Explorer


Theorem abrexfi

Description: An image set from a finite set is finite. (Contributed by Mario Carneiro, 13-Feb-2014)

Ref Expression
Assertion abrexfi ( 𝐴 ∈ Fin → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ∈ Fin )

Proof

Step Hyp Ref Expression
1 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
2 1 rnmpt ran ( 𝑥𝐴𝐵 ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 }
3 mptfi ( 𝐴 ∈ Fin → ( 𝑥𝐴𝐵 ) ∈ Fin )
4 rnfi ( ( 𝑥𝐴𝐵 ) ∈ Fin → ran ( 𝑥𝐴𝐵 ) ∈ Fin )
5 3 4 syl ( 𝐴 ∈ Fin → ran ( 𝑥𝐴𝐵 ) ∈ Fin )
6 2 5 eqeltrrid ( 𝐴 ∈ Fin → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } ∈ Fin )