Metamath Proof Explorer


Theorem abs0

Description: The absolute value of 0. (Contributed by NM, 26-Mar-2005) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion abs0 ( abs ‘ 0 ) = 0

Proof

Step Hyp Ref Expression
1 0cn 0 ∈ ℂ
2 absval ( 0 ∈ ℂ → ( abs ‘ 0 ) = ( √ ‘ ( 0 · ( ∗ ‘ 0 ) ) ) )
3 1 2 ax-mp ( abs ‘ 0 ) = ( √ ‘ ( 0 · ( ∗ ‘ 0 ) ) )
4 1 cjcli ( ∗ ‘ 0 ) ∈ ℂ
5 4 mul02i ( 0 · ( ∗ ‘ 0 ) ) = 0
6 5 fveq2i ( √ ‘ ( 0 · ( ∗ ‘ 0 ) ) ) = ( √ ‘ 0 )
7 sqrt0 ( √ ‘ 0 ) = 0
8 3 6 7 3eqtri ( abs ‘ 0 ) = 0