Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) |
2 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
3 |
1 2
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
4 |
|
oveq2 |
⊢ ( 𝐴 = 0 → ( 𝑥 · 𝐴 ) = ( 𝑥 · 0 ) ) |
5 |
3 4
|
eqeq12d |
⊢ ( 𝐴 = 0 → ( ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ↔ 0 = ( 𝑥 · 0 ) ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝐴 = 0 → ( ( ( abs ‘ 𝑥 ) = 1 ∧ ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ) ↔ ( ( abs ‘ 𝑥 ) = 1 ∧ 0 = ( 𝑥 · 0 ) ) ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝐴 = 0 → ( ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ) ↔ ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ 0 = ( 𝑥 · 0 ) ) ) ) |
8 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
9 |
8
|
cjcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
10 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
13 |
|
abs00 |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
14 |
13
|
necon3bid |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
15 |
14
|
biimpar |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
16 |
9 12 15
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
17 |
|
absdiv |
⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ) → ( abs ‘ ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) = ( ( abs ‘ ( ∗ ‘ 𝐴 ) ) / ( abs ‘ ( abs ‘ 𝐴 ) ) ) ) |
18 |
9 12 15 17
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) = ( ( abs ‘ ( ∗ ‘ 𝐴 ) ) / ( abs ‘ ( abs ‘ 𝐴 ) ) ) ) |
19 |
|
abscj |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
21 |
|
absidm |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
23 |
20 22
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( ∗ ‘ 𝐴 ) ) / ( abs ‘ ( abs ‘ 𝐴 ) ) ) = ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) |
24 |
12 15
|
dividd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) = 1 ) |
25 |
18 23 24
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) = 1 ) |
26 |
8 9 12 15
|
divassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / ( abs ‘ 𝐴 ) ) = ( 𝐴 · ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) ) |
27 |
12
|
sqvald |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) ) |
28 |
|
absvalsq |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
30 |
27 29
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) · ( abs ‘ 𝐴 ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
31 |
12 12 15 30
|
mvllmuld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / ( abs ‘ 𝐴 ) ) ) |
32 |
16 8
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) · 𝐴 ) = ( 𝐴 · ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) ) |
33 |
26 31 32
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) = ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) · 𝐴 ) ) |
34 |
|
fveqeq2 |
⊢ ( 𝑥 = ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) → ( ( abs ‘ 𝑥 ) = 1 ↔ ( abs ‘ ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) = 1 ) ) |
35 |
|
oveq1 |
⊢ ( 𝑥 = ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) → ( 𝑥 · 𝐴 ) = ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) · 𝐴 ) ) |
36 |
35
|
eqeq2d |
⊢ ( 𝑥 = ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ↔ ( abs ‘ 𝐴 ) = ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) · 𝐴 ) ) ) |
37 |
34 36
|
anbi12d |
⊢ ( 𝑥 = ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) → ( ( ( abs ‘ 𝑥 ) = 1 ∧ ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ) ↔ ( ( abs ‘ ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) = 1 ∧ ( abs ‘ 𝐴 ) = ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) · 𝐴 ) ) ) ) |
38 |
37
|
rspcev |
⊢ ( ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ∈ ℂ ∧ ( ( abs ‘ ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) = 1 ∧ ( abs ‘ 𝐴 ) = ( ( ( ∗ ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) · 𝐴 ) ) ) → ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ) ) |
39 |
16 25 33 38
|
syl12anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ) ) |
40 |
|
ax-icn |
⊢ i ∈ ℂ |
41 |
|
absi |
⊢ ( abs ‘ i ) = 1 |
42 |
|
it0e0 |
⊢ ( i · 0 ) = 0 |
43 |
42
|
eqcomi |
⊢ 0 = ( i · 0 ) |
44 |
41 43
|
pm3.2i |
⊢ ( ( abs ‘ i ) = 1 ∧ 0 = ( i · 0 ) ) |
45 |
|
fveqeq2 |
⊢ ( 𝑥 = i → ( ( abs ‘ 𝑥 ) = 1 ↔ ( abs ‘ i ) = 1 ) ) |
46 |
|
oveq1 |
⊢ ( 𝑥 = i → ( 𝑥 · 0 ) = ( i · 0 ) ) |
47 |
46
|
eqeq2d |
⊢ ( 𝑥 = i → ( 0 = ( 𝑥 · 0 ) ↔ 0 = ( i · 0 ) ) ) |
48 |
45 47
|
anbi12d |
⊢ ( 𝑥 = i → ( ( ( abs ‘ 𝑥 ) = 1 ∧ 0 = ( 𝑥 · 0 ) ) ↔ ( ( abs ‘ i ) = 1 ∧ 0 = ( i · 0 ) ) ) ) |
49 |
48
|
rspcev |
⊢ ( ( i ∈ ℂ ∧ ( ( abs ‘ i ) = 1 ∧ 0 = ( i · 0 ) ) ) → ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ 0 = ( 𝑥 · 0 ) ) ) |
50 |
40 44 49
|
mp2an |
⊢ ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ 0 = ( 𝑥 · 0 ) ) |
51 |
50
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ 0 = ( 𝑥 · 0 ) ) ) |
52 |
7 39 51
|
pm2.61ne |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℂ ( ( abs ‘ 𝑥 ) = 1 ∧ ( abs ‘ 𝐴 ) = ( 𝑥 · 𝐴 ) ) ) |