Step |
Hyp |
Ref |
Expression |
1 |
|
negcl |
⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) |
2 |
|
abstri |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + - 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ - 𝐵 ) ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + - 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ - 𝐵 ) ) ) |
4 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
5 |
4
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 + - 𝐵 ) ) = ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
6 |
|
absneg |
⊢ ( 𝐵 ∈ ℂ → ( abs ‘ - 𝐵 ) = ( abs ‘ 𝐵 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ - 𝐵 ) = ( abs ‘ 𝐵 ) ) |
8 |
7
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) + ( abs ‘ - 𝐵 ) ) = ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) |
9 |
3 5 8
|
3brtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ 𝐴 ) + ( abs ‘ 𝐵 ) ) ) |