Metamath Proof Explorer
		
		
		
		Description:  Absolute value of differences around common element.  (Contributed by NM, 2-Oct-1999)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						absvalsqi.1 | 
						⊢ 𝐴  ∈  ℂ  | 
					
					
						 | 
						 | 
						abssub.2 | 
						⊢ 𝐵  ∈  ℂ  | 
					
					
						 | 
						 | 
						abs3dif.3 | 
						⊢ 𝐶  ∈  ℂ  | 
					
				
					 | 
					Assertion | 
					abs3difi | 
					⊢  ( abs ‘ ( 𝐴  −  𝐵 ) )  ≤  ( ( abs ‘ ( 𝐴  −  𝐶 ) )  +  ( abs ‘ ( 𝐶  −  𝐵 ) ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							absvalsqi.1 | 
							⊢ 𝐴  ∈  ℂ  | 
						
						
							| 2 | 
							
								
							 | 
							abssub.2 | 
							⊢ 𝐵  ∈  ℂ  | 
						
						
							| 3 | 
							
								
							 | 
							abs3dif.3 | 
							⊢ 𝐶  ∈  ℂ  | 
						
						
							| 4 | 
							
								
							 | 
							abs3dif | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  ≤  ( ( abs ‘ ( 𝐴  −  𝐶 ) )  +  ( abs ‘ ( 𝐶  −  𝐵 ) ) ) )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							mp3an | 
							⊢ ( abs ‘ ( 𝐴  −  𝐵 ) )  ≤  ( ( abs ‘ ( 𝐴  −  𝐶 ) )  +  ( abs ‘ ( 𝐶  −  𝐵 ) ) )  |