Metamath Proof Explorer


Theorem abs3lemd

Description: Lemma involving absolute value of differences. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 ( 𝜑𝐴 ∈ ℂ )
abssubd.2 ( 𝜑𝐵 ∈ ℂ )
abs3difd.3 ( 𝜑𝐶 ∈ ℂ )
abs3lemd.4 ( 𝜑𝐷 ∈ ℝ )
abs3lemd.5 ( 𝜑 → ( abs ‘ ( 𝐴𝐶 ) ) < ( 𝐷 / 2 ) )
abs3lemd.6 ( 𝜑 → ( abs ‘ ( 𝐶𝐵 ) ) < ( 𝐷 / 2 ) )
Assertion abs3lemd ( 𝜑 → ( abs ‘ ( 𝐴𝐵 ) ) < 𝐷 )

Proof

Step Hyp Ref Expression
1 abscld.1 ( 𝜑𝐴 ∈ ℂ )
2 abssubd.2 ( 𝜑𝐵 ∈ ℂ )
3 abs3difd.3 ( 𝜑𝐶 ∈ ℂ )
4 abs3lemd.4 ( 𝜑𝐷 ∈ ℝ )
5 abs3lemd.5 ( 𝜑 → ( abs ‘ ( 𝐴𝐶 ) ) < ( 𝐷 / 2 ) )
6 abs3lemd.6 ( 𝜑 → ( abs ‘ ( 𝐶𝐵 ) ) < ( 𝐷 / 2 ) )
7 abs3lem ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝐴𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶𝐵 ) ) < ( 𝐷 / 2 ) ) → ( abs ‘ ( 𝐴𝐵 ) ) < 𝐷 ) )
8 1 2 3 4 7 syl22anc ( 𝜑 → ( ( ( abs ‘ ( 𝐴𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶𝐵 ) ) < ( 𝐷 / 2 ) ) → ( abs ‘ ( 𝐴𝐵 ) ) < 𝐷 ) )
9 5 6 8 mp2and ( 𝜑 → ( abs ‘ ( 𝐴𝐵 ) ) < 𝐷 )