Step |
Hyp |
Ref |
Expression |
1 |
|
abscld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
abssubd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
abs3difd.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
abs3lemd.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
abs3lemd.5 |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ) |
6 |
|
abs3lemd.6 |
⊢ ( 𝜑 → ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) |
7 |
|
abs3lem |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝐷 ) ) |
8 |
1 2 3 4 7
|
syl22anc |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝐴 − 𝐶 ) ) < ( 𝐷 / 2 ) ∧ ( abs ‘ ( 𝐶 − 𝐵 ) ) < ( 𝐷 / 2 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝐷 ) ) |
9 |
5 6 8
|
mp2and |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝐷 ) |