Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
⊢ ( ⊤ → ( AbsVal ‘ ℂfld ) = ( AbsVal ‘ ℂfld ) ) |
2 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
3 |
2
|
a1i |
⊢ ( ⊤ → ℂ = ( Base ‘ ℂfld ) ) |
4 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
5 |
4
|
a1i |
⊢ ( ⊤ → + = ( +g ‘ ℂfld ) ) |
6 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
7 |
6
|
a1i |
⊢ ( ⊤ → · = ( .r ‘ ℂfld ) ) |
8 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
9 |
8
|
a1i |
⊢ ( ⊤ → 0 = ( 0g ‘ ℂfld ) ) |
10 |
|
cnring |
⊢ ℂfld ∈ Ring |
11 |
10
|
a1i |
⊢ ( ⊤ → ℂfld ∈ Ring ) |
12 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
13 |
12
|
a1i |
⊢ ( ⊤ → abs : ℂ ⟶ ℝ ) |
14 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
15 |
14
|
a1i |
⊢ ( ⊤ → ( abs ‘ 0 ) = 0 ) |
16 |
|
absgt0 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ≠ 0 ↔ 0 < ( abs ‘ 𝑥 ) ) ) |
17 |
16
|
biimpa |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → 0 < ( abs ‘ 𝑥 ) ) |
18 |
17
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) → 0 < ( abs ‘ 𝑥 ) ) |
19 |
|
absmul |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) ) |
20 |
19
|
ad2ant2r |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) ) |
21 |
20
|
3adant1 |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( abs ‘ ( 𝑥 · 𝑦 ) ) = ( ( abs ‘ 𝑥 ) · ( abs ‘ 𝑦 ) ) ) |
22 |
|
abstri |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( abs ‘ 𝑥 ) + ( abs ‘ 𝑦 ) ) ) |
23 |
22
|
ad2ant2r |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( abs ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( abs ‘ 𝑥 ) + ( abs ‘ 𝑦 ) ) ) |
24 |
23
|
3adant1 |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( abs ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( abs ‘ 𝑥 ) + ( abs ‘ 𝑦 ) ) ) |
25 |
1 3 5 7 9 11 13 15 18 21 24
|
isabvd |
⊢ ( ⊤ → abs ∈ ( AbsVal ‘ ℂfld ) ) |
26 |
25
|
mptru |
⊢ abs ∈ ( AbsVal ‘ ℂfld ) |