| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 2 |
|
absval |
⊢ ( ( ∗ ‘ 𝐴 ) ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( √ ‘ ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( √ ‘ ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 4 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
| 5 |
1 4
|
mpdan |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
| 6 |
|
cjcj |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
| 8 |
5 7
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( √ ‘ ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) ) |
| 10 |
3 9
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 11 |
|
absval |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 12 |
10 11
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ∗ ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |