Metamath Proof Explorer


Theorem abscld

Description: Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis abscld.1 ( 𝜑𝐴 ∈ ℂ )
Assertion abscld ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 abscld.1 ( 𝜑𝐴 ∈ ℂ )
2 abscl ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ )
3 1 2 syl ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ )