Metamath Proof Explorer


Theorem abscli

Description: Real closure of absolute value. (Contributed by NM, 2-Aug-1999)

Ref Expression
Hypothesis absvalsqi.1 𝐴 ∈ ℂ
Assertion abscli ( abs ‘ 𝐴 ) ∈ ℝ

Proof

Step Hyp Ref Expression
1 absvalsqi.1 𝐴 ∈ ℂ
2 abscl ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ )
3 1 2 ax-mp ( abs ‘ 𝐴 ) ∈ ℝ