Metamath Proof Explorer


Theorem abscn

Description: The absolute value function on complex numbers is continuous. (Contributed by NM, 22-Aug-2007) (Proof shortened by Mario Carneiro, 10-Jan-2014)

Ref Expression
Hypotheses abscn.3 𝐽 = ( TopOpen ‘ ℂfld )
abscn.4 𝐾 = ( topGen ‘ ran (,) )
Assertion abscn abs ∈ ( 𝐽 Cn 𝐾 )

Proof

Step Hyp Ref Expression
1 abscn.3 𝐽 = ( TopOpen ‘ ℂfld )
2 abscn.4 𝐾 = ( topGen ‘ ran (,) )
3 cnngp fld ∈ NrmGrp
4 cnfldnm abs = ( norm ‘ ℂfld )
5 4 1 2 nmcn ( ℂfld ∈ NrmGrp → abs ∈ ( 𝐽 Cn 𝐾 ) )
6 3 5 ax-mp abs ∈ ( 𝐽 Cn 𝐾 )