Description: The absolute value function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abscn2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( abs ‘ 𝑧 ) − ( abs ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 2 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 3 | fss | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → abs : ℂ ⟶ ℂ ) | |
| 4 | 1 2 3 | mp2an | ⊢ abs : ℂ ⟶ ℂ |
| 5 | abs2difabs | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( abs ‘ 𝑧 ) − ( abs ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ) | |
| 6 | 4 5 | cn1lem | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( abs ‘ 𝑧 ) − ( abs ‘ 𝐴 ) ) ) < 𝑥 ) ) |