| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 2 |  | eqid | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 3 | 1 2 | abscn | ⊢ abs  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( topGen ‘ ran  (,) ) ) | 
						
							| 4 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 5 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 6 | 1 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 7 | 6 | toponunii | ⊢ ℂ  =  ∪  ( TopOpen ‘ ℂfld ) | 
						
							| 8 | 7 | restid | ⊢ ( ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ )  →  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  =  ( TopOpen ‘ ℂfld ) ) | 
						
							| 9 | 6 8 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld )  ↾t  ℂ )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 10 | 9 | eqcomi | ⊢ ( TopOpen ‘ ℂfld )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℂ ) | 
						
							| 11 | 1 | tgioo2 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 12 | 1 10 11 | cncfcn | ⊢ ( ( ℂ  ⊆  ℂ  ∧  ℝ  ⊆  ℂ )  →  ( ℂ –cn→ ℝ )  =  ( ( TopOpen ‘ ℂfld )  Cn  ( topGen ‘ ran  (,) ) ) ) | 
						
							| 13 | 4 5 12 | mp2an | ⊢ ( ℂ –cn→ ℝ )  =  ( ( TopOpen ‘ ℂfld )  Cn  ( topGen ‘ ran  (,) ) ) | 
						
							| 14 | 3 13 | eleqtrri | ⊢ abs  ∈  ( ℂ –cn→ ℝ ) |