Metamath Proof Explorer


Theorem abscosbd

Description: Bound for the absolute value of the cosine of a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion abscosbd ( 𝐴 ∈ ℝ → ( abs ‘ ( cos ‘ 𝐴 ) ) ≤ 1 )

Proof

Step Hyp Ref Expression
1 cosbnd ( 𝐴 ∈ ℝ → ( - 1 ≤ ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) ≤ 1 ) )
2 recoscl ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ )
3 1red ( 𝐴 ∈ ℝ → 1 ∈ ℝ )
4 2 3 absled ( 𝐴 ∈ ℝ → ( ( abs ‘ ( cos ‘ 𝐴 ) ) ≤ 1 ↔ ( - 1 ≤ ( cos ‘ 𝐴 ) ∧ ( cos ‘ 𝐴 ) ≤ 1 ) ) )
5 1 4 mpbird ( 𝐴 ∈ ℝ → ( abs ‘ ( cos ‘ 𝐴 ) ) ≤ 1 )