| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abscvgcvg.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
abscvgcvg.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
abscvgcvg.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 4 |
|
abscvgcvg.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 5 |
|
abscvgcvg.5 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 6 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 |
7 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 9 |
4
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 10 |
3 9
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 11 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 12 |
1
|
eleq2i |
⊢ ( 𝑘 ∈ 𝑍 ↔ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 13 |
3
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 14 |
9 13
|
eqled |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 15 |
10
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 16 |
15
|
mullidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 1 · ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 17 |
14 16
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ≤ ( 1 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 18 |
12 17
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ≤ ( 1 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 19 |
1 8 10 4 5 11 18
|
cvgcmpce |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |