| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → 0 ∈ ℝ ) |
| 2 |
|
0le0 |
⊢ 0 ≤ 0 |
| 3 |
2
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → 0 ≤ 0 ) |
| 4 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → 𝐵 ∈ ℝ ) |
| 5 |
|
recxpcl |
⊢ ( ( 0 ∈ ℝ ∧ 0 ≤ 0 ∧ 𝐵 ∈ ℝ ) → ( 0 ↑𝑐 𝐵 ) ∈ ℝ ) |
| 6 |
1 3 4 5
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( 0 ↑𝑐 𝐵 ) ∈ ℝ ) |
| 7 |
|
cxpge0 |
⊢ ( ( 0 ∈ ℝ ∧ 0 ≤ 0 ∧ 𝐵 ∈ ℝ ) → 0 ≤ ( 0 ↑𝑐 𝐵 ) ) |
| 8 |
1 3 4 7
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → 0 ≤ ( 0 ↑𝑐 𝐵 ) ) |
| 9 |
6 8
|
absidd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( abs ‘ ( 0 ↑𝑐 𝐵 ) ) = ( 0 ↑𝑐 𝐵 ) ) |
| 10 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
| 11 |
10
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 𝐵 ) ) |
| 12 |
11
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( abs ‘ ( 0 ↑𝑐 𝐵 ) ) ) |
| 13 |
10
|
abs00bd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( abs ‘ 𝐴 ) = 0 ) |
| 14 |
13
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( ( abs ‘ 𝐴 ) ↑𝑐 𝐵 ) = ( 0 ↑𝑐 𝐵 ) ) |
| 15 |
9 12 14
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( abs ‘ 𝐴 ) ↑𝑐 𝐵 ) ) |
| 16 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℝ ) |
| 17 |
16
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 18 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 19 |
18
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 20 |
17 19
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 21 |
|
absef |
⊢ ( ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 22 |
20 21
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 23 |
16 19
|
remul2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) = ( 𝐵 · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 24 |
|
relog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) = ( log ‘ ( abs ‘ 𝐴 ) ) ) |
| 25 |
24
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) = ( log ‘ ( abs ‘ 𝐴 ) ) ) |
| 26 |
25
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) = ( 𝐵 · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 27 |
23 26
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) = ( 𝐵 · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) |
| 28 |
27
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( 𝐵 · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) ) |
| 29 |
22 28
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( 𝐵 · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) ) |
| 30 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 31 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
| 32 |
|
cxpef |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 33 |
30 31 17 32
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 34 |
33
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 35 |
30
|
abscld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 36 |
35
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 37 |
|
abs00 |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
| 39 |
38
|
necon3bid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
| 40 |
39
|
biimpar |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 41 |
|
cxpef |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ ( abs ‘ 𝐴 ) ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) ) |
| 42 |
36 40 17 41
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) ) |
| 43 |
29 34 42
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( abs ‘ 𝐴 ) ↑𝑐 𝐵 ) ) |
| 44 |
15 43
|
pm2.61dane |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( abs ‘ 𝐴 ) ↑𝑐 𝐵 ) ) |