Step |
Hyp |
Ref |
Expression |
1 |
|
abscxpbnd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
abscxpbnd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
abscxpbnd.3 |
⊢ ( 𝜑 → 0 ≤ ( ℜ ‘ 𝐵 ) ) |
4 |
|
abscxpbnd.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
5 |
|
abscxpbnd.5 |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ≤ 𝑀 ) |
6 |
|
1le1 |
⊢ 1 ≤ 1 |
7 |
6
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → 1 ≤ 1 ) |
8 |
|
oveq12 |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 0 ) ) |
9 |
8
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 0 ) ) |
10 |
|
0cn |
⊢ 0 ∈ ℂ |
11 |
|
cxp0 |
⊢ ( 0 ∈ ℂ → ( 0 ↑𝑐 0 ) = 1 ) |
12 |
10 11
|
ax-mp |
⊢ ( 0 ↑𝑐 0 ) = 1 |
13 |
9 12
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = 1 ) |
14 |
13
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( abs ‘ 1 ) ) |
15 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
16 |
14 15
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = 1 ) |
17 |
|
fveq2 |
⊢ ( 𝐵 = 0 → ( ℜ ‘ 𝐵 ) = ( ℜ ‘ 0 ) ) |
18 |
|
re0 |
⊢ ( ℜ ‘ 0 ) = 0 |
19 |
17 18
|
eqtrdi |
⊢ ( 𝐵 = 0 → ( ℜ ‘ 𝐵 ) = 0 ) |
20 |
19
|
oveq2d |
⊢ ( 𝐵 = 0 → ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) = ( 𝑀 ↑𝑐 0 ) ) |
21 |
4
|
recnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
22 |
21
|
cxp0d |
⊢ ( 𝜑 → ( 𝑀 ↑𝑐 0 ) = 1 ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( 𝑀 ↑𝑐 0 ) = 1 ) |
24 |
20 23
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) = 1 ) |
25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → 𝐵 = 0 ) |
26 |
25
|
abs00bd |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( abs ‘ 𝐵 ) = 0 ) |
27 |
26
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( ( abs ‘ 𝐵 ) · π ) = ( 0 · π ) ) |
28 |
|
picn |
⊢ π ∈ ℂ |
29 |
28
|
mul02i |
⊢ ( 0 · π ) = 0 |
30 |
27 29
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( ( abs ‘ 𝐵 ) · π ) = 0 ) |
31 |
30
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) = ( exp ‘ 0 ) ) |
32 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
33 |
31 32
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) = 1 ) |
34 |
24 33
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) = ( 1 · 1 ) ) |
35 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
36 |
34 35
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) = 1 ) |
37 |
7 16 36
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 = 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) ≤ ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) ) |
38 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 𝐴 = 0 ) |
39 |
38
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( 0 ↑𝑐 𝐵 ) ) |
40 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → 𝐵 ∈ ℂ ) |
41 |
|
0cxp |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) |
42 |
40 41
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 0 ↑𝑐 𝐵 ) = 0 ) |
43 |
39 42
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = 0 ) |
44 |
43
|
abs00bd |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = 0 ) |
45 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
46 |
1
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ ) |
47 |
1
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ 𝐴 ) ) |
48 |
45 46 4 47 5
|
letrd |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
49 |
2
|
recld |
⊢ ( 𝜑 → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
50 |
4 48 49
|
recxpcld |
⊢ ( 𝜑 → ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) ∈ ℝ ) |
51 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) ∈ ℝ ) |
52 |
2
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐵 ) ∈ ℝ ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
54 |
|
pire |
⊢ π ∈ ℝ |
55 |
|
remulcl |
⊢ ( ( ( abs ‘ 𝐵 ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( abs ‘ 𝐵 ) · π ) ∈ ℝ ) |
56 |
53 54 55
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( ( abs ‘ 𝐵 ) · π ) ∈ ℝ ) |
57 |
56
|
reefcld |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ∈ ℝ ) |
58 |
4 48 49
|
cxpge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) ) |
59 |
58
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 0 ≤ ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) ) |
60 |
56
|
rpefcld |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ∈ ℝ+ ) |
61 |
60
|
rpge0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 0 ≤ ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) |
62 |
51 57 59 61
|
mulge0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → 0 ≤ ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) ) |
63 |
44 62
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 0 ) ∧ 𝐵 ≠ 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) ≤ ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) ) |
64 |
37 63
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝐴 = 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) ≤ ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) ) |
65 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) |
66 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
67 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℂ ) |
68 |
65 66 67
|
cxpefd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
69 |
68
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
70 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
71 |
1 70
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
72 |
67 71
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
73 |
|
absef |
⊢ ( ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
74 |
72 73
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
75 |
67
|
recld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
76 |
71
|
recld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
77 |
75 76
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
78 |
77
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
79 |
67
|
imcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
80 |
71
|
imcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
81 |
80
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
82 |
79 81
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
83 |
82
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
84 |
|
efadd |
⊢ ( ( ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ∧ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) → ( exp ‘ ( ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) + ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) · ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
85 |
78 83 84
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) + ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) · ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
86 |
79 80
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ 𝐵 ) · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
87 |
86
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ 𝐵 ) · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
88 |
78 87
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) + - ( ( ℑ ‘ 𝐵 ) · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) − ( ( ℑ ‘ 𝐵 ) · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
89 |
79
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
90 |
80
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
91 |
89 90
|
mulneg2d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ( ℑ ‘ 𝐵 ) · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
92 |
91
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) + ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) + - ( ( ℑ ‘ 𝐵 ) · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
93 |
67 71
|
remuld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) = ( ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) − ( ( ℑ ‘ 𝐵 ) · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
94 |
88 92 93
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) + ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
95 |
94
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) + ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
96 |
|
relog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) = ( log ‘ ( abs ‘ 𝐴 ) ) ) |
97 |
1 96
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( log ‘ 𝐴 ) ) = ( log ‘ ( abs ‘ 𝐴 ) ) ) |
98 |
97
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐵 ) · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) |
99 |
98
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) ) |
100 |
46
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℂ ) |
101 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
102 |
1
|
abs00ad |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
103 |
102
|
necon3bid |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
104 |
103
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
105 |
75
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
106 |
101 104 105
|
cxpefd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑𝑐 ( ℜ ‘ 𝐵 ) ) = ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( log ‘ ( abs ‘ 𝐴 ) ) ) ) ) |
107 |
99 106
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ( abs ‘ 𝐴 ) ↑𝑐 ( ℜ ‘ 𝐵 ) ) ) |
108 |
107
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( ℜ ‘ ( log ‘ 𝐴 ) ) ) ) · ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
109 |
85 95 108
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
110 |
69 74 109
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( ( ( abs ‘ 𝐴 ) ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
111 |
65
|
abscld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
112 |
65
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
113 |
111 112 75
|
recxpcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑𝑐 ( ℜ ‘ 𝐵 ) ) ∈ ℝ ) |
114 |
82
|
reefcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
115 |
113 114
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ∈ ℝ ) |
116 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) ∈ ℝ ) |
117 |
116 114
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ∈ ℝ ) |
118 |
52 54 55
|
sylancl |
⊢ ( 𝜑 → ( ( abs ‘ 𝐵 ) · π ) ∈ ℝ ) |
119 |
118
|
reefcld |
⊢ ( 𝜑 → ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ∈ ℝ ) |
120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ∈ ℝ ) |
121 |
116 120
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) ∈ ℝ ) |
122 |
82
|
rpefcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ∈ ℝ+ ) |
123 |
122
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 0 ≤ ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
124 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝑀 ∈ ℝ ) |
125 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 0 ≤ ( ℜ ‘ 𝐵 ) ) |
126 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≤ 𝑀 ) |
127 |
111 112 124 75 125 126
|
cxple2ad |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) ↑𝑐 ( ℜ ‘ 𝐵 ) ) ≤ ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) ) |
128 |
113 116 114 123 127
|
lemul1ad |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ≤ ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
129 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 0 ≤ ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) ) |
130 |
89
|
abscld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ℑ ‘ 𝐵 ) ) ∈ ℝ ) |
131 |
81
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
132 |
131
|
abscld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
133 |
130 132
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( ℑ ‘ 𝐵 ) ) · ( abs ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
134 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐵 ) · π ) ∈ ℝ ) |
135 |
82
|
leabsd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
136 |
89 131
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( ( abs ‘ ( ℑ ‘ 𝐵 ) ) · ( abs ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
137 |
135 136
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( ( abs ‘ ( ℑ ‘ 𝐵 ) ) · ( abs ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
138 |
67
|
abscld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
139 |
138 132
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐵 ) · ( abs ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
140 |
131
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 0 ≤ ( abs ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
141 |
|
absimle |
⊢ ( 𝐵 ∈ ℂ → ( abs ‘ ( ℑ ‘ 𝐵 ) ) ≤ ( abs ‘ 𝐵 ) ) |
142 |
67 141
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ℑ ‘ 𝐵 ) ) ≤ ( abs ‘ 𝐵 ) ) |
143 |
130 138 132 140 142
|
lemul1ad |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( ℑ ‘ 𝐵 ) ) · ( abs ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ≤ ( ( abs ‘ 𝐵 ) · ( abs ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
144 |
54
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → π ∈ ℝ ) |
145 |
67
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
146 |
90
|
absnegd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
147 |
|
logimcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
148 |
1 147
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
149 |
148
|
simpld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
150 |
54
|
renegcli |
⊢ - π ∈ ℝ |
151 |
|
ltle |
⊢ ( ( - π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
152 |
150 80 151
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
153 |
149 152
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
154 |
148
|
simprd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
155 |
|
absle |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ↔ ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) ) |
156 |
80 54 155
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ↔ ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) ) |
157 |
153 154 156
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
158 |
146 157
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
159 |
132 144 138 145 158
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐵 ) · ( abs ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ≤ ( ( abs ‘ 𝐵 ) · π ) ) |
160 |
133 139 134 143 159
|
letrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ ( ℑ ‘ 𝐵 ) ) · ( abs ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ≤ ( ( abs ‘ 𝐵 ) · π ) ) |
161 |
82 133 134 137 160
|
letrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( ( abs ‘ 𝐵 ) · π ) ) |
162 |
|
efle |
⊢ ( ( ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ∧ ( ( abs ‘ 𝐵 ) · π ) ∈ ℝ ) → ( ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( ( abs ‘ 𝐵 ) · π ) ↔ ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ≤ ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) ) |
163 |
82 134 162
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( ( abs ‘ 𝐵 ) · π ) ↔ ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ≤ ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) ) |
164 |
161 163
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ≤ ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) |
165 |
114 120 116 129 164
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ≤ ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) ) |
166 |
115 117 121 128 165
|
letrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( ℑ ‘ 𝐵 ) · - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ≤ ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) ) |
167 |
110 166
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) ≤ ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) ) |
168 |
64 167
|
pm2.61dane |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) ≤ ( ( 𝑀 ↑𝑐 ( ℜ ‘ 𝐵 ) ) · ( exp ‘ ( ( abs ‘ 𝐵 ) · π ) ) ) ) |