Step |
Hyp |
Ref |
Expression |
1 |
|
divcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
2 |
|
abscl |
⊢ ( ( 𝐴 / 𝐵 ) ∈ ℂ → ( abs ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ ( 𝐴 / 𝐵 ) ) ∈ ℝ ) |
4 |
3
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
5 |
|
absrpcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ 𝐵 ) ∈ ℝ+ ) |
6 |
5
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ 𝐵 ) ∈ ℝ+ ) |
7 |
6
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ 𝐵 ) ∈ ℂ ) |
8 |
6
|
rpne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ 𝐵 ) ≠ 0 ) |
9 |
4 7 8
|
divcan4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ( abs ‘ ( 𝐴 / 𝐵 ) ) · ( abs ‘ 𝐵 ) ) / ( abs ‘ 𝐵 ) ) = ( abs ‘ ( 𝐴 / 𝐵 ) ) ) |
10 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
11 |
|
absmul |
⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( abs ‘ ( 𝐴 / 𝐵 ) ) · ( abs ‘ 𝐵 ) ) ) |
12 |
1 10 11
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( abs ‘ ( 𝐴 / 𝐵 ) ) · ( abs ‘ 𝐵 ) ) ) |
13 |
|
divcan1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) |
14 |
13
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( abs ‘ 𝐴 ) ) |
15 |
12 14
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( abs ‘ ( 𝐴 / 𝐵 ) ) · ( abs ‘ 𝐵 ) ) = ( abs ‘ 𝐴 ) ) |
16 |
15
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( ( abs ‘ ( 𝐴 / 𝐵 ) ) · ( abs ‘ 𝐵 ) ) / ( abs ‘ 𝐵 ) ) = ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐵 ) ) ) |
17 |
9 16
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( abs ‘ ( 𝐴 / 𝐵 ) ) = ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐵 ) ) ) |