| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
⊢ ( ( abs ‘ 𝑀 ) = 𝑀 → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ 𝑀 ∥ 𝑁 ) ) |
| 2 |
1
|
bicomd |
⊢ ( ( abs ‘ 𝑀 ) = 𝑀 → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
| 3 |
2
|
a1i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) = 𝑀 → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) ) |
| 4 |
|
negdvdsb |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ - 𝑀 ∥ 𝑁 ) ) |
| 5 |
|
breq1 |
⊢ ( ( abs ‘ 𝑀 ) = - 𝑀 → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ - 𝑀 ∥ 𝑁 ) ) |
| 6 |
5
|
bicomd |
⊢ ( ( abs ‘ 𝑀 ) = - 𝑀 → ( - 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
| 7 |
4 6
|
sylan9bb |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( abs ‘ 𝑀 ) = - 𝑀 ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
| 8 |
7
|
ex |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) = - 𝑀 → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) ) |
| 9 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 10 |
9
|
absord |
⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) = 𝑀 ∨ ( abs ‘ 𝑀 ) = - 𝑀 ) ) |
| 12 |
3 8 11
|
mpjaod |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |