Metamath Proof Explorer


Theorem absef

Description: The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007)

Ref Expression
Assertion absef ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ 𝐴 ) ) = ( exp ‘ ( ℜ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 replim ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) )
2 1 fveq2d ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) )
3 recl ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ )
4 3 recnd ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ )
5 ax-icn i ∈ ℂ
6 imcl ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ )
7 6 recnd ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ )
8 mulcl ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ )
9 5 7 8 sylancr ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ )
10 efadd ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) → ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) )
11 4 9 10 syl2anc ( 𝐴 ∈ ℂ → ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) )
12 2 11 eqtrd ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) )
13 12 fveq2d ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ 𝐴 ) ) = ( abs ‘ ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) )
14 3 reefcld ( 𝐴 ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ )
15 14 recnd ( 𝐴 ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℂ )
16 efcl ( ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ )
17 9 16 syl ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ )
18 15 17 absmuld ( 𝐴 ∈ ℂ → ( abs ‘ ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · ( abs ‘ ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) )
19 absefi ( ( ℑ ‘ 𝐴 ) ∈ ℝ → ( abs ‘ ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) = 1 )
20 6 19 syl ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) = 1 )
21 20 oveq2d ( 𝐴 ∈ ℂ → ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · ( abs ‘ ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · 1 ) )
22 13 18 21 3eqtrd ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ 𝐴 ) ) = ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · 1 ) )
23 15 abscld ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) ∈ ℝ )
24 23 recnd ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) ∈ ℂ )
25 24 mulid1d ( 𝐴 ∈ ℂ → ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · 1 ) = ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) )
26 efgt0 ( ( ℜ ‘ 𝐴 ) ∈ ℝ → 0 < ( exp ‘ ( ℜ ‘ 𝐴 ) ) )
27 3 26 syl ( 𝐴 ∈ ℂ → 0 < ( exp ‘ ( ℜ ‘ 𝐴 ) ) )
28 0re 0 ∈ ℝ
29 ltle ( ( 0 ∈ ℝ ∧ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( exp ‘ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) )
30 28 14 29 sylancr ( 𝐴 ∈ ℂ → ( 0 < ( exp ‘ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) )
31 27 30 mpd ( 𝐴 ∈ ℂ → 0 ≤ ( exp ‘ ( ℜ ‘ 𝐴 ) ) )
32 14 31 absidd ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) = ( exp ‘ ( ℜ ‘ 𝐴 ) ) )
33 22 25 32 3eqtrd ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ 𝐴 ) ) = ( exp ‘ ( ℜ ‘ 𝐴 ) ) )