Step |
Hyp |
Ref |
Expression |
1 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
3 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
4 |
3
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
5 |
|
ax-icn |
⊢ i ∈ ℂ |
6 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
7 |
6
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
8 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
9 |
5 7 8
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
10 |
|
efadd |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) → ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
11 |
4 9 10
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
12 |
2 11
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ 𝐴 ) ) = ( abs ‘ ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
14 |
3
|
reefcld |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
15 |
14
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℂ ) |
16 |
|
efcl |
⊢ ( ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ) |
17 |
9 16
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ) |
18 |
15 17
|
absmuld |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · ( abs ‘ ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
19 |
|
absefi |
⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℝ → ( abs ‘ ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) = 1 ) |
20 |
6 19
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) = 1 ) |
21 |
20
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · ( abs ‘ ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) = ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · 1 ) ) |
22 |
13 18 21
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ 𝐴 ) ) = ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · 1 ) ) |
23 |
15
|
abscld |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) ∈ ℝ ) |
24 |
23
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) ∈ ℂ ) |
25 |
24
|
mulid1d |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) · 1 ) = ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) ) |
26 |
|
efgt0 |
⊢ ( ( ℜ ‘ 𝐴 ) ∈ ℝ → 0 < ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) |
27 |
3 26
|
syl |
⊢ ( 𝐴 ∈ ℂ → 0 < ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) |
28 |
|
0re |
⊢ 0 ∈ ℝ |
29 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 < ( exp ‘ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) ) |
30 |
28 14 29
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 0 < ( exp ‘ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) ) |
31 |
27 30
|
mpd |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) |
32 |
14 31
|
absidd |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) = ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) |
33 |
22 25 32
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ 𝐴 ) ) = ( exp ‘ ( ℜ ‘ 𝐴 ) ) ) |