| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
| 2 |
1
|
eqeq2i |
⊢ ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ↔ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = 1 ) |
| 3 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 4 |
3
|
renegcld |
⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
|
0re |
⊢ 0 ∈ ℝ |
| 6 |
|
reef11 |
⊢ ( ( - ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 7 |
4 5 6
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = ( exp ‘ 0 ) ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 8 |
2 7
|
bitr3id |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = 1 ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 9 |
3
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 10 |
9
|
negeq0d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) = 0 ↔ - ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 11 |
8 10
|
bitr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = 1 ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 12 |
|
ax-icn |
⊢ i ∈ ℂ |
| 13 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 14 |
12 13
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 15 |
|
absef |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) ) |
| 17 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 18 |
17
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 19 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 20 |
12 9 19
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 21 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 22 |
18 20 21
|
comraddd |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( i · ( ℑ ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) = ( i · ( ( i · ( ℑ ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) ) |
| 24 |
|
adddi |
⊢ ( ( i ∈ ℂ ∧ ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ( i · ( ℑ ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) = ( ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) |
| 25 |
12 20 18 24
|
mp3an2i |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ( i · ( ℑ ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) = ( ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) |
| 26 |
|
ixi |
⊢ ( i · i ) = - 1 |
| 27 |
26
|
oveq1i |
⊢ ( ( i · i ) · ( ℑ ‘ 𝐴 ) ) = ( - 1 · ( ℑ ‘ 𝐴 ) ) |
| 28 |
|
mulass |
⊢ ( ( i ∈ ℂ ∧ i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( ( i · i ) · ( ℑ ‘ 𝐴 ) ) = ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 29 |
12 12 9 28
|
mp3an12i |
⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · ( ℑ ‘ 𝐴 ) ) = ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 30 |
9
|
mulm1d |
⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( ℑ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 31 |
27 29 30
|
3eqtr3a |
⊢ ( 𝐴 ∈ ℂ → ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( i · ( i · ( ℑ ‘ 𝐴 ) ) ) + ( i · ( ℜ ‘ 𝐴 ) ) ) = ( - ( ℑ ‘ 𝐴 ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) |
| 33 |
25 32
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ( i · ( ℑ ‘ 𝐴 ) ) + ( ℜ ‘ 𝐴 ) ) ) = ( - ( ℑ ‘ 𝐴 ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) |
| 34 |
23 33
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) = ( - ( ℑ ‘ 𝐴 ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) |
| 35 |
34
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ ( - ( ℑ ‘ 𝐴 ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) ) |
| 36 |
4 17
|
crred |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( - ( ℑ ‘ 𝐴 ) + ( i · ( ℜ ‘ 𝐴 ) ) ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 37 |
35 36
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( i · 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 38 |
37
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ℜ ‘ ( i · 𝐴 ) ) ) = ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) |
| 39 |
16 38
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( exp ‘ - ( ℑ ‘ 𝐴 ) ) ) |
| 40 |
39
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = 1 ↔ ( exp ‘ - ( ℑ ‘ 𝐴 ) ) = 1 ) ) |
| 41 |
|
reim0b |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
| 42 |
11 40 41
|
3bitr4rd |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( abs ‘ ( exp ‘ ( i · 𝐴 ) ) ) = 1 ) ) |