| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elznn0nn | ⊢ ( 𝑁  ∈  ℤ  ↔  ( 𝑁  ∈  ℕ0  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) ) ) | 
						
							| 2 |  | absexp | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) | 
						
							| 3 | 2 | ex | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑁  ∈  ℕ0  →  ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( 𝑁  ∈  ℕ0  →  ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) ) | 
						
							| 5 |  | 1cnd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  1  ∈  ℂ ) | 
						
							| 6 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  𝐴  ∈  ℂ ) | 
						
							| 7 |  | nnnn0 | ⊢ ( - 𝑁  ∈  ℕ  →  - 𝑁  ∈  ℕ0 ) | 
						
							| 8 | 7 | ad2antll | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  - 𝑁  ∈  ℕ0 ) | 
						
							| 9 | 6 8 | expcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( 𝐴 ↑ - 𝑁 )  ∈  ℂ ) | 
						
							| 10 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  𝐴  ≠  0 ) | 
						
							| 11 |  | nnz | ⊢ ( - 𝑁  ∈  ℕ  →  - 𝑁  ∈  ℤ ) | 
						
							| 12 | 11 | ad2antll | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  - 𝑁  ∈  ℤ ) | 
						
							| 13 | 6 10 12 | expne0d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( 𝐴 ↑ - 𝑁 )  ≠  0 ) | 
						
							| 14 |  | absdiv | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐴 ↑ - 𝑁 )  ∈  ℂ  ∧  ( 𝐴 ↑ - 𝑁 )  ≠  0 )  →  ( abs ‘ ( 1  /  ( 𝐴 ↑ - 𝑁 ) ) )  =  ( ( abs ‘ 1 )  /  ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) ) ) | 
						
							| 15 | 5 9 13 14 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( abs ‘ ( 1  /  ( 𝐴 ↑ - 𝑁 ) ) )  =  ( ( abs ‘ 1 )  /  ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) ) ) | 
						
							| 16 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 17 | 16 | oveq1i | ⊢ ( ( abs ‘ 1 )  /  ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) )  =  ( 1  /  ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) ) | 
						
							| 18 |  | absexp | ⊢ ( ( 𝐴  ∈  ℂ  ∧  - 𝑁  ∈  ℕ0 )  →  ( abs ‘ ( 𝐴 ↑ - 𝑁 ) )  =  ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) | 
						
							| 19 | 6 8 18 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( abs ‘ ( 𝐴 ↑ - 𝑁 ) )  =  ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( 1  /  ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) )  =  ( 1  /  ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) ) | 
						
							| 21 | 17 20 | eqtrid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( ( abs ‘ 1 )  /  ( abs ‘ ( 𝐴 ↑ - 𝑁 ) ) )  =  ( 1  /  ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) ) | 
						
							| 22 | 15 21 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( abs ‘ ( 1  /  ( 𝐴 ↑ - 𝑁 ) ) )  =  ( 1  /  ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) ) | 
						
							| 23 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  𝑁  ∈  ℝ ) | 
						
							| 24 | 23 | recnd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  𝑁  ∈  ℂ ) | 
						
							| 25 |  | expneg2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  - 𝑁  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑁 )  =  ( 1  /  ( 𝐴 ↑ - 𝑁 ) ) ) | 
						
							| 26 | 6 24 8 25 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( 𝐴 ↑ 𝑁 )  =  ( 1  /  ( 𝐴 ↑ - 𝑁 ) ) ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  =  ( abs ‘ ( 1  /  ( 𝐴 ↑ - 𝑁 ) ) ) ) | 
						
							| 28 |  | abscl | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 30 | 29 | recnd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 31 |  | expneg2 | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  - 𝑁  ∈  ℕ0 )  →  ( ( abs ‘ 𝐴 ) ↑ 𝑁 )  =  ( 1  /  ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) ) | 
						
							| 32 | 30 24 8 31 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( ( abs ‘ 𝐴 ) ↑ 𝑁 )  =  ( 1  /  ( ( abs ‘ 𝐴 ) ↑ - 𝑁 ) ) ) | 
						
							| 33 | 22 27 32 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) | 
						
							| 34 | 33 | ex | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ )  →  ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) ) | 
						
							| 35 | 4 34 | jaod | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ( 𝑁  ∈  ℕ0  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) ) | 
						
							| 36 | 35 | 3impia | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  ( 𝑁  ∈  ℕ0  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) ) )  →  ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) | 
						
							| 37 | 1 36 | syl3an3b | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( abs ‘ ( 𝐴 ↑ 𝑁 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) |