Metamath Proof Explorer


Theorem absf

Description: Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion absf abs : ℂ ⟶ ℝ

Proof

Step Hyp Ref Expression
1 df-abs abs = ( 𝑥 ∈ ℂ ↦ ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) )
2 absval ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) = ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) )
3 abscl ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ )
4 2 3 eqeltrrd ( 𝑥 ∈ ℂ → ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ∈ ℝ )
5 1 4 fmpti abs : ℂ ⟶ ℝ