Description: Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007) (Revised by Mario Carneiro, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absf | ⊢ abs : ℂ ⟶ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abs | ⊢ abs = ( 𝑥 ∈ ℂ ↦ ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ) | |
| 2 | absval | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) = ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ) | |
| 3 | abscl | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ ) | |
| 4 | 2 3 | eqeltrrd | ⊢ ( 𝑥 ∈ ℂ → ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 5 | 1 4 | fmpti | ⊢ abs : ℂ ⟶ ℝ |