Description: Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004) (Revised by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjmulrcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) | |
| 2 | cjmulge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) | |
| 3 | sqrtge0 | ⊢ ( ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) → 0 ≤ ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 5 | absval | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) | |
| 6 | 4 5 | breqtrrd | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |